
I/O Aware Power Shifting

Lee Savoie, David K. Lowenthal
Department of Computer Science

The University of Arizona

Bronis de Supinski, Tanzima Islam,
Kathryn Mohror, Barry Rountree,

Martin Schulz
Lawrence Livermore National Laboratory

ABSTRACT
Power on future clusters will be strictly limited. This will in turn
force some flavor of power limits on individual applications. How-
ever, high-performance computing applications often do not con-
sume a fixed amount of power over their lifetime. When applica-
tions execute low-power I/O phases, we can improve system-wide
performance (that is, of all applications) if we shift power to appli-
cations executing high-power, computation-bound phases.

This paper studies algorithms that leverage application semantics—
specifically the knowledge of I/O phase frequency and duration
as well as power needs—to shift power from applications in I/O
phases to those in compute phases. We investigate several algo-
rithms, including ones that explicitly stagger applications to im-
prove power shifting. We design, implement, and validate our
novel techniques in a simulator we call PowerShifter. Compared
to executing without power shifting, our algorithms achieve an av-
erage improvement in application performance of up to 8% with a
maximum improvement of 27%.

1. INTRODUCTION
Power is a significant concern for upcoming exascale systems

due to the 20 megawatts power budget set by the U.S. Department
of Energy (DOE). In fact, a recent DOE report stated that power
was the most difficult challenge for exascale [4]. Today, the fastest
supercomputers in the world have theoretical peaks only in the tens
of petaflops while using in excess of 10 megawatts. Based on this
trend, experts predict that without significant changes in software,
we will not meet this power budget and instead exceed it by at
least an order of magnitude [3, 4, 26]. Because of these power
constraints on future clusters, applications will soon execute with a
strict power limit, and will rely on advances in system software to
help them meet the limits while still maintaining performance.

While there has been systems software research in budgeting
power while maximizing performance of single applications in iso-
lation [27], there is little research when it comes to set of applica-
tions. As we show in this paper, there is a significant opportunity to
improve overall system performance by shifting power across con-
currently running applications. When applications execute in I/O

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

phases, they generally use less power than they use when they ex-
ecute in computation phases [10, 28]. Thus, the power demand of
applications varies over time, and overall performance can be im-
proved if power is shifted dynamically between applications in an
intelligent manner.

This paper focuses on developing and analyzing algorithms that
leverage application semantics to shift power from applications in
I/O phases to those in compute phases. We assume knowledge of
key characteristics of both computation and I/O phases, including
their start times, execution frequencies, durations, and power needs.
We implemented our algorithms in a simulator called PowerShifter
and used it to study a range of scenarios, including job size dis-
tribution, number of jobs, application power consumption, cluster
power limit, and I/O phase frequency and duration.

Within PowerShifter we investigate several power shifting strate-
gies. Our base strategy, which often performs quite well, shifts
power on demand, i.e., whenever an I/O phase occurs. We also
design and implement more sophisticated algorithms that poten-
tially delay some applications so as to achieve a schedule in which
the minimum number of applications incur I/O concurrently. This
helps to avoid situations in which an application in an I/O phase
cannot identify a target “partner” application for power shifting.
In addition, PowerShifter handles several challenges, including job
failures, job arrivals, and job departures. PowerShifter changes the
schedule when necessary, on the fly, in response to these unpre-
dictable events.

In this paper, we make several contributions.

• We develop the first algorithms that we know of that lever-
age application semantics to shift power between different
applications during I/O phases.

• We show that a simple, on-demand algorithm that shifts power
is quite effective in improving average performance.

• We show that complex scheduling algorithms for power shift-
ing are effective on capability systems with few, large jobs.

• We implement our algorithms in PowerShifter, which allows
us to explore parameters including differing application power
needs and job count and size distributions.

• We validate PowerShifter with an implementation using three
real applications: LAMMPS, ParaDiS, and Cactus.

Results with PowerShifter show that using our algorithms, the
average improvement (over all applications) is up to 8% with a
maximum improvement of 27%, as compared to executing with-
out shifting power between applications. Moreover, scheduling
I/O phases explicitly can account for an 12% improvement over
straightforward algorithms.

The rest of this paper is organized as follows. Section 2 pro-
vides background, and Section 3 provides our assumptions used

in this paper. Section 4 details the algorithms we used, Section 5
describes our PowerShifter simulator, and Section 6 discusses our
implementation on a real cluster and its use in validating Power-
Shifter. Section 7 presents our experimental results. Finally, Sec-
tion 8 discusses related work and Section 9 summarizes the paper.

2. BACKGROUND
Power-constrained supercomputing has received both significant

and recent attention. Primarily, this is because exascale systems
will likely have their power use bounded [4]. The reaction to power-
constrained systems has largely been to focus on individual appli-
cations and develop techniques to execute those applications faster
given a fixed amount of power. The straightforward idea is to give
each application an amount of power directly based on the num-
ber of nodes it uses and for the run-time system (operating on be-
half of that application) to shift that power only within that appli-
cation [27].

In this paper, we specifically focus on optimizing the perfor-
mance of many (or all) applications by allowing power to be shifted
from applications in I/O phases to those in computation phases.
We specifically study applications whose power needs vary because
they alternate between computation phases (which are CPU inten-
sive) and I/O phases, (which are not CPU intensive). We note that
the CPU intensity of a computation phase depends on the mix of
CPU operations, cache hits, and main memory accesses; different
applications (and application phases) react differently to additional
power. This paper considers shifting CPU power only, and we also
ignore any extra power that is available due to idle nodes.

I/O phases generally occur because of either checkpointing or
visualization output. With checkpointing, applications save their
state to the I/O system periodically, and if a failure occurs, the ap-
plication is re-started from the most recently saved checkpoint. Vi-
sualization output similarly represents periodic system state (with-
out, of course, any analogy to a restart operation). The key is that
both types of I/O generally occur periodically in HPC applications.
In this paper we group both kinds of I/O into the same category and
refer to them simply as I/O phases. From a power perspective, I/O
phases generally use little power, because techniques such as DMA
or asynchronous I/O and network operations cause the CPU to idle
and wait.

Overall, we focus on shifting power from applications executing
I/O phases to applications in computation phases. In this way, we
aim to speed up applications when they are computing, without
negatively affecting applications in I/O phases. In the next section,
we discuss the application and system model that we assume in the
paper.

3. ENVIRONMENT AND ASSUMPTIONS
We assume a high-performance computing (HPC) system that

consists of a total of N nodes, with some number of applications
executing, each with a potentially different node count. The sum
of the nodes in use by all applications is less than or equal to N .
The HPC system is prescribed a global power bound P. In the ab-
sence of an intelligent multi-node or multi-application strategy, we
assume that this bound imposes a uniform power bound per node
for each application, so each node would receive P/N power. As
stated previously, we allow a node to have more or less than P/N ,
depending on application characteristics.

3.1 Phase Characterization
In this paper, we assume that all HPC application I/O is exposed.

This allows our PowerShifter system to know precisely when appli-

Computation I/O

C I C I

d
f

s
0 t

Figure 1: Basic model.

cations are in I/O phases and computation phases. This can be done
by having the application expose each computation and I/O phase
in advance of execution. This information is often already present
through explicit configuration by the user or the use of checkpoint
or “visualization-dump” libraries, which maintain this information
for their own purposes. We note that with our simpler algorithms
(see Section 4), less information is actually needed (just when ap-
plications enter and exit the current I/O phase).

We assume that each application consists of two types of phases:
computation and I/O. We represent a computation phase with a de-
scriptor Cs,f,d,p and an I/O phase with a descriptor Is′,f ′,d′,p′ . The
meaning of Cs,f,d,p is that the first instance of the computation
phase starts at time s, and a computation phase occurs every f time
units, and has duration d time units (see Figure 1). The power con-
sumed by the computation phase is denoted by p. The variables
in Is′,f ′,d′,p′ have an identical meaning, but for I/O phases. There
can in general be multiple computation or I/O phase descriptors;
for example, there could be I/O due to both periodic checkpointing
and visualization output. In such a case, we would need to add an
identifier per phase. For simplicity, in this paper we assume that
there is only one computation phase descriptor and one I/O phase
descriptor per application. We also use the variables s, f , and d
interchangeably in this paper for both computation and I/O phases.

As can be seen from the denotation of computation and I/O phases,
we assume that all phases are periodic. Moreover, for most appli-
cations, the value of f for I/O phases will be chosen so that it is a
multiple of the length of a program-level timestep (iteration1). This
is the case for most programs that execute at supercomputing facil-
ities; the I/O phase is most often checkpointing, which by nature
executes in a fairly regular, periodic manner. Our experience with
applications that save state for visualization (e.g., ParaDiS, a dis-
location simulator [5]) is that they also execute these phases in a
periodic manner.

We also assume that the power usage information for each appli-
cation is available—specifically the relative performance improve-
ment by an application when increasing its power allocation. Gen-
erally, this information can be obtained by profiling, but it could
also be provided by the programmer or inferred by program anal-
ysis. Several researchers have developed power profilers such as
PowerPack [6].

3.2 Scheduling
In this work we allow the set of applications executing on the ma-

chine to change over time. That is, our model allows for random
application arrivals and departures. At HPC installations, users typ-
ically submit jobs by specifying a node count and an estimated
run time. Resource requests are maintained in a job queue, and
when the resource manager acquires the set of dedicated nodes that
matches a request, users are allocated these nodes. The scheduling
policy is space sharing [14], in which compute node resources are
exclusively allocated to a single job until its completion. From the
point of view of this paper, jobs arrive randomly and complete at

1We use timestep and iteration interchangeably in this paper.

Algorithm 1 Spread algorithm. Variable my.freePower represents
the difference for an application between its allocated power and
its consumed power in an I/O phase.
1: function ENTER_IO
2: decrease my.allocatedPower by my.freePower
3: my.apps = apps in computation phase that can utilize power
4: donationAmount = my.freePower/sizeof(my.apps)
5: for i in my.apps do
6: increase i.allocatedPower by donationAmount
7: function EXIT_IO
8: increase my.power by my.freePower
9: reclaimAmount = my.freePower/sizeof(my.apps)

10: for i in my.apps do
11: decrease i.power by reclaimAmount

some point. We assume that each job has the descriptors we de-
scribed above. In this paper, we assume that the scheduler uses
a straightforward first-come, first-served (FCFS) approach. In re-
ality, supercomputers use backfilling-based algorithms that allow
jobs to be executed out of order, leading to better resource utiliza-
tion; however, our power-shifting techniques are effective indepen-
dent of the particular scheduling strategy.

4. ALGORITHMS
We have designed four algorithms with increasing levels of so-

phistication for dynamically sharing power between applications.
We call these algorithms Spread, Priority, Stagger, and Control.
Each is described below. In general, the algorithms all shift power;
additionally, Stagger and Control schedule I/O phases explicitly.

4.1 Spread
Spread is our baseline power sharing algorithm for improving the

performance of as many applications as possible. Spread uses only
the knowledge that an application is in an I/O phase and ignores
the frequency and duration of the phase. During the I/O phase,
Spread allocates this excess power evenly among all applications
that can profitably use more power to make more progress. When
the I/O phase completes, the application receives the power back.
Algorithm 1 outlines Spread.

4.2 Priority
Priority is our baseline power sharing algorithm for improving

the performance of one high-priority application. The motivation
here is that on some systems, there may be a strict priority order
of applications, and PowerShifter handles this case by finishing the
high-priority application as quickly as possible. Like Spread, Pri-
ority uses only the knowledge that an application is in an I/O phase,
ignoring phase frequency and duration. However, during the I/O
phase, Priority simply allocates all of the excess power of an appli-
cation to the highest-priority application that can make use of the
power. As we know the power needs of each application, we can
simply traverse the priority list of applications and stop when we
reach the first application that will improve given more power. Pri-
ority may shift power to multiple applications in the event that the
first application that can use power does not need all of the available
excess power. We assume that priorities are provided by the system
administrator and assigning them is outside the scope of this work.

4.3 Stagger
Spread and Priority perform quite well in many situations (see

Section 7). However, situations exist in which power cannot be

Algorithm 2 Stagger algorithm. Functions Enter_IO and Exit_IO
are omitted as they are identical to those in Spread.
1: function APPLICATION_ENTER(AppType a)
2: g = findFreeGroup(a)
3: if g != NULL then
4: delay a
5: g.add(a)
6: else
7: g’ = createNewGroup()
8: g’.add(a)
9: function APPLICATION_EXIT(AppType a)

10: g = a.getGroup()
11: g.remove(a)
12: if g.size < Threshold then
13: for i in g do . Run entry protocol for each app in g
14: Application_Enter(i)
15: g.remove()

profitably used by either algorithm because we exert no control
over when the applications reach their respective I/O phases. It
becomes possible, especially as the I/O phase frequency and du-
ration increase, to have enough applications enter their I/O phase
concurrently that some of the available power cannot be profitably
reallocated. A picture of this for three applications is shown in the
leftmost pane of Figure 2.

If instead the applications hit their I/O phases in a sufficiently
disjoint manner, all power will be profitably used. Fortunately, as
mentioned above, PowerShifter knows the I/O frequency and du-
ration for each application. This allows us to schedule the appli-
cations intelligently to reduce (or ideally minimize) the amount of
applications that are in I/O phases at any one time.

Our Stagger algorithm, detailed in Algorithm 2, accomplishes
this by placing applications into groups. Within each group, Stag-
ger calculates when the next I/O phase will occur for each appli-
cation in the group and then staggers these phases so that only
one application in the group is in an I/O phase at a time. Stag-
ger avoids overlap of the next I/O phase for each application but,
as a greedy approach, cannot guarantee avoiding overlap for all fu-
ture I/O phases of the applications. When calculating the time of
I/O phases, we do not take into account the effect of power limits
or power sharing. When Stagger creates an I/O phase schedule, it
implements that schedule by adding small delays to some applica-
tions to force their I/O phases to occur at the intended times (see
the middle pane of Figure 2).

While it is possible that delaying applications can increase run
time, the likely large number of time steps present in HPC applica-
tions allow these delays to be amortized. Therefore, it is likely that
the improvement from better power utilization is well worth these
delays. Also note that applications are only delayed when they first
join a group, which happens either when the application arrives or
when the application’s current group is disbanded because it be-
came too small. In addition, Stagger limits the amount of delay
that it will assign to any single application to a small percentage
of the expected run time of that application. We expect Stagger
to be most effective with jobs of similar size in terms of number
of nodes. This is because staggering I/O phases of jobs that have
vastly different node counts provides minimal benefit due to the
wide disparity in power needs.

4.4 Control
The Control algorithm (see Algorithm 3) assumes that the run-

I'' C''

C' I'

C I

No I/O Scheduling

delay

Stagger

I'' C''

C' I'

C I

C''I''

C' C' I'

C I

Control

Computation Timestep I/O

Figure 2: Picture of how Stagger and Control schedule I/O phases.

Algorithm 3 Control algorithm. Variable my.lastScheduledIOTime
stores the expected time of the most recent I/O event. Also, the
code to prevent an application from starving (never executing an
I/O phase) is omitted for brevity.
1: function ENTER_IO
2: for i in allApps except me do
3: if i.phase == Computation then
4: neededPower += i.neededPower-i.allocatedPower
5: cond1 = my.freePower <= neededPower
6: cond2 = (currentTime - my.lastScheduledIOTime) > (k×d)
7: if cond1 or cond2 then
8: my.phase = IO
9: Spread.Enter_IO() . See Algorithm 1

10: function EXIT_IO
11: my.phase = Computation
12: my.lastScheduledIOTime += f
13: Spread.Exit_IO() . See Algorithm 1

time system has the ability to control I/O phase timing externally to
the application. Conceptually, this could represent either an appli-
cation that uses system level checkpointing or an application that
executes an API call at the end of each timestep to determine if it is
time to execute an I/O phase For example, if an application uses the
checkpointing library SCR [29], it will call an SCR routine to de-
termine if a checkpoint is needed at that time and only perform the
I/O if the SCR library determines it is necessary. Thus, Control has
the ability to minimize overlap of I/O phases across applications
without incurring delays in any application.

While Control makes assumptions that are not common for the
majority of current HPC applications (e.g., external control of I/O
phase timing), we include it because it provides an approach that
may become more important and common going forward. At ex-
ascale it may be necessary to defer I/O phases to avoid excessive
overhead, and I/O phase libraries will need to be aware of current
system conditions such as potential imminent failures to determine
when I/O phases are necessary. Thus, system control of I/O phases,
especially of checkpoints, may become more prevalent.

The right pane of Figure 2 shows the basic operation of Control,
which works as follows: applications request to enter I/O phases at
appropriate times based on their I/O interval. When an application
requests to enter an I/O phase, it will be allowed to do so only if
that will not cause power to be wasted; that is, if some set of other
applications can profitably use the full amount of power that will
become available due to this application’s I/O phase. If this is not
true, the application will not enter an I/O phase and will attempt to
do so again at the next opportunity, presumably at the end of the
next timestep.

There are two special cases in the Control algorithm. First, if no
applications are in I/O phases, the first application that requests to
enter an I/O phase will be able to. This prevents situations in which
an application is never allowed to execute an I/O phase because
there are not enough other applications to use its excess power. Sec-
ond, if an application’s I/O phase has been delayed by more than
k× d, the next I/O request will be granted. Here, d is the length of
the interval between I/O phases and k is a constant (currently 0.5,
or half the time between I/O phases). This prevents the situation
in which an I/O phase is delayed sufficiently long to have a nega-
tive impact on reliability or on the post-mortem visualization. In
addition, when an application’s I/O phase is delayed, the amount of
time until the next I/O phase will be reduced by the delay time to
ensure that the I/O phase interval will be unchanged over the entire
program2. As with k above, the idea is to avoid a negative impact
on reliability or visualization.

5. SIMULATOR
In order to test the effects of power shifting on application exe-

cution, we developed PowerShifter, a simulator that can explore the
effects of power shifting between applications. Using a simulation
allows us to execute experiments quickly and investigate situations
not supported by current hardware or applications.

5.1 Description
PowerShifter simulates a set of applications executing together

on a hypothetical power-constrained HPC system. The input to
PowerShifter includes a set of applications, together with a descrip-
tor for the computational and I/O phase of each as described in Sec-
tion 3, as well as a power shifting algorithm to use. The descriptor
can be explicitly specified or selected randomly from distributions
that are based on our experiences with real applications. The output
from PowerShifter is the run time of each application, including the
cost of any delays incurred by the power sharing algorithm.

PowerShifter runs by dividing time into discrete time steps. At
the beginning of each time step, any applications that arrive are
started. In addition, any paused applications (if the Stagger power
shifting algorithm is used) that have reached the end of their pause
period are allowed to continue. At this point, if we are using Stag-
ger, PowerShifter lines up I/O phases, one after the other, in time,
which may include pausing additional applications. It then calcu-
lates power needs for each application based on its current phase
(computing, I/O, or paused) and re-allocates any unused power
based on the chosen power shifting algorithm. Then, PowerShifter
advances one time step, which involves calculating the amount of
work each application is able to perform. This is a function of
2It may be impossible to avoid a slight decrease in the I/O phase
interval if an I/O phase is delayed near the end of the application.

the application’s current power allocation relative to the amount of
power it could profitably use, the current phase, and the response
to changes in its power limit.

At the end of the time step, each application’s current phase is
updated, which may involve entering or exiting an I/O phase. Pow-
erShifter can then inject failures based on an exponential distri-
bution and a user-provided MTTF. When a failure occurs, the ap-
plication is placed back to the last checkpoint, a restart penalty is
assessed, and then the application continues from that point. This
overall cycle continues until all applications have completed.

Injecting failures is orthogonal to how the algorithms handle the
failure. Spread, Priority, and Control do not take any specific ac-
tion on a failure. On the other hand, Stagger has to potentially
redo group assignment. Stagger accomplishes this by simply treat-
ing a failure as a job departure and a restart as a job arrival—so
calls ApplicationEnter and ApplicationExit, respec-
tively (see Algorithm 2).

One limitation of PowerShifter is that time is discretized, which
forces all significant events (such as phase changes) to occur at the
boundaries of time steps. In some cases, such as the start and end
of I/O phases, we account for and reduce this error. However, in
general, there will be some error that is related to the size of the
time steps. In the next section we show that the simulator does in
fact match our implementation quite closely.

6. IMPLEMENTATION AND VALIDATION
We have implemented our techniques in a prototype that dynami-

cally reallocates power between executing applications. We use our
prototype to validate PowerShifter as well as provide some results
on real hardware to get an idea of the potential of our approach. We
discuss the implementation and validation in turn.

6.1 Implementation
Our prototype consists of three parts: a wrapper, a runtime, and

a controller. The wrapper uses PMPI (the standard MPI profiling
interface) to report start and end times of both computation and I/O.
This component is linked into all applications.

Our prototype runs on Cab, which is a cluster of 1,296 Intel
Xeons housed at Lawrence Livermore National Laboratory. Cab
uses SLURM [39] for resource management, and our prototype is
is orchestrated via a shell script that is submitted to MOAB. The
script requests a node allocation that is large enough for all the
jobs that will be run, with one additional node used for the con-
troller. When the requested node allocation is granted, the script
uses SLURM to start the controller on one of the nodes and the
runtime on all other nodes. It then uses SLURM to start jobs on
disjoint subsets of nodes, excluding the node the controller is run-
ning on. The script exits when all jobs, including the controller and
all the runtimes, have completed.

The runtime runs in the background on each node, communi-
cates with the wrapper and the controller, and implements node-
level power limits using the RAPL (Running Average Power Limit)
MSR (Model Specific Register) interface [18]. It pauses and re-
sumes the application as necessary using the signals SIGSTOP and
SIGCONT, and accesses MSRs via libmsr [38] and librapl to
set power limits and record power usage and CPU activity for de-
bugging and analysis. In our prototype, the runtime is a user-space
process. While our prototype requires access to RAPL MSRs from
user space, it could be adapted to run on any cluster that provides
power-limiting capability.

The final component in our prototype is the controller. Only one
copy of the controller is running during each experiment over sev-
eral jobs. The controller communicates with the runtimes on each

of the nodes, and then based on node-level information (specifi-
cally regarding application state and power needs), the controller
makes power allocation and application pause/continue decisions.
The individual runtimes carry out these decisions on their respec-
tive nodes. The controller is configurable and allows new power
sharing algorithms to easily be developed and used. The controller
is application aware—it groups nodes by applications—so power
sharing algorithms are free to make decisions at the node level or
application level.

Operationally, the controller and runtimes start up first, and each
of the runtimes registers with the controller. Eventually, an appli-
cation starts and calls MPI_Init on each of its nodes. The wrap-
per intercepts this call, calls PMPI_Init, and sends a signal to
the runtime indicating that the application has started on that node.
Control is then returned to the application. The runtime sends a
signal to the controller indicating that the application has started on
that node. It also includes information about the application, in-
cluding the application’s power needs during computation and I/O.

As mentioned in Section 2, our prototype assumes that the power
usage information about the application is known. The controller
responds to the runtime by giving it an initial power limit, which
the runtime implements using MSRs (no communication with the
application is required to set the power level). At some point after
this , the application enters an I/O phase. Our prototype currently
has the application communicate to the wrapper via a user-inserted
MPI_Pcontrol call; this is just one way to handle this, and a
full-scale implementation could handle this in less intrusive ways.
The wrapper forwards this information to the runtime, which sends
it to the controller. At this point, depending on the power sharing
algorithm that the controller is running, it has the option of lowering
the power limit on the node that is in an I/O phase and possibly
also raising the power limit on some subset of other nodes. As
noted above, the controller also has the option to pause or resume
the application at any time—this is also dependent on the power
sharing algorithm that the controller is running.

6.2 Simulator Validation
In order to validate our PowerShifter simulator, we compare it to

our prototype using LAMMPS, ParaDiS, and Cactus. LAMMPS
is used as a molecular dynamics simulation and is from the ASC
Sequoia benchmark suite [1]. ParaDiS [5] is a production disloca-
tion dynamics simulations application that operates on dynamically
changing, unbalanced data set sizes across MPI processes. We used
the “Copper” input set. Cactus [16, 2] is a framework that numeri-
cally solves Einstein’s equations [37] via adaptive mesh refinement.

We chose these applications because each of them represents ac-
tual applications run on modern HPC systems and uses periodic I/O
phases. We first executed each application at various power levels
to create a simple model of how the application responds to power
limit changes. Specifically, we fit a third degree polynomial to this
data and then scaled the polynomial based on a number selected
from a uniform interval (see Section 7.1 for more details). This
model was used by PowerShifter to predict the run time of these
applications running under various power sharing algorithms. We
compared the run time predictions from PowerShifter with the me-
dian run time of at least five actual runs. The results are provided
in Table 1.

In all cases, PowerShifter was able to predict application run time
with less than 2% error and, in most cases, less than 1% error. The
most significant source of error that we noticed was accounting for
increase in performance due to an increase in allocated power. The
worst case (not shown in Table 1) occurred with one experiment
with LAMMPS, in which its error when increasing power from

Experiment Set of Applications Percentage Error

1
LAMMPS 0.2%
ParaDiS 1.7%
Cactus 0.4%

2 LAMMPS 0.1%
Cactus 0.4%

3

ParaDiS 0.5%
ParaDiS 0.9%
ParaDiS 0.7%
ParaDiS 1.2%

4

Cactus 0.1%
Cactus 0.3%
Cactus 0.8%
Cactus 0.2%

Table 1: Validation runs.

60W to 80W was 3.3%. We note that overall, our implementation
showed improvements in application runtimes as high as 26%.

7. RESULTS
This section describes the results of our PowerShifter simulator.

In turn, we describe sets of simulated experiments on systems with
large numbers of applications and then small numbers of applica-
tions.

7.1 Setup
In most of our simulation results, the number of nodes and the

job arrival times were taken directly from the a job trace (see be-
low). Unless other wise stated, the power limit for all tests was 60W
per node. Unfortunately, many application characteristics that we
need for our simulation are not available in traces—including num-
ber of iterations, power consumption, I/O phase duration and fre-
quency, and application response to changes in allocated power. We
derived these application characteristics as follows, based on the
real HPC applications described in the previous section (LAMMPS,
ParaDiS, and Cactus).

• We estimated the number of application iterations using the
run time from the trace, and we chose the iteration time from
a uniform distribution between 0.1 and 2 seconds (applica-
tions will generally perform several iterations between I/O
phases).

• We chose the power consumption during computation from a
uniform distribution between 80W and 100W per node, and
we chose I/O phase power from a uniform distribution be-
tween 35W and 45W per node.

• We chose I/O phase time from a uniform distribution be-
tween 30 seconds and 5 minutes.

• Some applications enter I/O phases after a fixed number of
iterations, and others enter I/O phases after a fixed amount of
time. In our simulation, roughly 80% of applications enter
I/O phases after a fixed number of iterations, and the rest
enter I/O phases after a fixed amount of time.

• The number of iterations or amount of time between I/O
phases was calculated based on the iteration time, I/O phase
time, and percent of time spent in I/O phases, which was an
input to the simulation.

0
2

4
6

8
10

0
2

4
6

8
10

Fifty Applications − Average Improvement

P
er

ce
nt

 Im
pr

ov
em

en
t

ov
er

 N
o

S
ha

rin
g

 10% 20% 30% 40% 50%

Percent of Time in I/O Phases

Spread
Stagger
Control

I/O Phases
Computation Phases

Figure 3: Average percentage improvement with 50 applica-
tions.

• To emulate the response of applications to changes in the
power limit, we fit the third degree polynomial discussed in
Section 6.2 to data from runs of ParaDiS at several different
power levels. The minimum improvement due to an increase
in power (10%) represents a memory-bound program, and
the maximum improvement (250%) represents a CPU-bound
program. The 250% number is modeled after the range of
frequencies on the Cab cluster that we observed when set-
ting power bounds on ParaDiS of 40 W to 90 W, which was
1.2GHz to 3.0GHz.

• We generally investigate a range of percentage of time an
application spends in I/O from 10% to 50%. While 50%
is larger than typically encountered, we use it as our upper
bound as a way to study effects on our algorithms of increas-
ing I/O phase time.

7.2 Large Numbers of Applications
Our first set of experiments cover scenarios with large numbers

of concurrent applications, similar to those found on capacity ma-
chines. In this subsection, all experiments used 50 applications run-
ning on a simulated 512 node cluster, except as noted for those in
Section 7.2.3. We used a portion of the RICC trace from the Paral-
lel Workloads Archive [21], which was produced from the RIKEN
Integrated Cluster of Clusters in Japan. In these tests, we randomly
injected failures with an MTTF of 41 minutes across the entire clus-
ter, except as noted in Section 7.2.2.

7.2.1 Average Improvement
The average percentage improvement of our tests is shown in

Figure 3. This experiment covers 50 applications across several
runs with different sets of random parameters. There are two possi-
ble sources of performance improvement. First, an application ex-
ecutes computation faster due to power shifting, and second, an ap-
plication may execute fewer I/O phases. The latter situation occurs
in two cases. First, if an application measures the interval between
I/O phases in time rather than iterations, it can execute fewer I/O
phases when it runs faster. Second, the Control algorithm may push
the final I/O phase of an application beyond the end of the applica-
tion. To show these two sources of improvement, we have divided
the improvement into the portion due to faster computation (solid
fill) and the portion due to dropping I/O phases (crosshatched). We
do not display Priority in this experiment, because Priority is in-
tended to provide maximum (not average) improvement to one (or
a small set) of applications.

As expected, as the amount of time applications spend in I/O
phases increases, the benefit of power shifting also increases. At
this large number of applications, Stagger performs slightly worse

0
10

20
30

40
0

10
20

30
40

Fifty Applications − Max Improvement
P

er
ce

nt
 Im

pr
ov

em
en

t
ov

er
 N

o
S

ha
rin

g

 10% 20% 30% 40% 50%

Percent of Time in I/O Phases

Spread
Stagger
Control
Priority

I/O Phases
Computation Phases

Figure 4: Maximum percentage improvement with 50 applica-
tions.

than Spread, simply because Stagger continues to incur delays to
stagger I/O phases even when the benefit is minimal. When ap-
plications spend 10% of time in I/O phases, the benefit of Control
over Spread is small; when there are a large number of applica-
tions, the probability that power is wasted due to a large percentage
of the applications executing I/O phases at once is small. As the
time spent in I/O phases increases, this probability becomes larger,
and so does the benefit of Control over Spread. Also, a relatively
small amount of the improvement comes from dropped I/O phases,
which is consistent with the majority of applications taking their
I/O phases after a set number of iterations rather than a set amount
of time. Control occasionally pushes an I/O phase past the end of
the run, which results in a larger benefit from dropped I/O phases
than the other two algorithms. However, this benefit is only a frac-
tion of the total benefit of Control over Stagger and Spread.

7.2.2 Maximum Improvement
Figure 4 shows the maximum improvement over the fifty appli-

cations with each algorithm. We did not inject failures in this test,
because a failure that occurs soon after a checkpoint in one run and
just before a checkpoint in a different run can create a large perfor-
mance improvement that is not related to power shifting. For Pri-
ority, we assigned priorities in reverse order of CPU-intensiveness;
applications that are highly CPU-intensive get the highest priority.
Each run is executed several times with different random parame-
ters. The graph shows the median of the maximum improvement
achieved by any application for a given run. As in Figure 3, we
have subdivided the improvements due to faster computation (solid
fill) and dropping I/O phases (crosshatched).

For Spread, Stagger, and Control, the majority of the improve-
ment comes from applications that are able to avoid some I/O phases.
However, Priority, which is focused on executing one application
as fast as possible, achieves the majority of its improvement from
simply executing computation phases faster. Priority is also able to
achieve larger maximum improvements than the other algorithms.
The only exceptions to this are Control at 40% and 50%. In both
of those cases, Control’s large improvement was for a short run-
ning application that took one I/O phase in the baseline run, and
Control shifted that I/O phase past the end of the run. Thus, the
improvement from Priority is more beneficial overall.

7.2.3 Effect of Power
The relationship between an application’s computation power,

I/O phase power, and system-imposed power limit can also affect
the effectiveness of power shifting. To explore this dimension, we
executed several tests in which we varied the global power limit
such that the power allocated to each node ranged from the mini-

mum to maximum amounts. Unlike the previous two subsections,
these experiments used only 20 applications because of otherwise
excessive simulation time. In addition, here the I/O and computa-
tion power per node were 40W and 80W, respectively. In this test,
the cluster was large enough to run all jobs, so jobs were scheduled
when they arrived.

We executed tests for cases in which I/O phases took up 10%,
30%, and 50% of execution time. The results are shown in Figure 5.
The power limit shown on the x-axis is the global power limit di-
vided by the number of nodes; thus it is the power limit per node in
the absence of power shifting. In all three graphs, only Spread and
Control are shown; the other algorithms had performance similar
to or worse than Spread. In these graphs, the percentage shown in
the title is the percent of time spent in I/O phases at 65W.

At the lowest power limit (40W per node), no benefit from power
shifting is possible because no application will ever have unused
power. Similarly, when the power limit is 80W per node, all appli-
cations will always have enough power; this is analogous to execut-
ing without a power limit. In the cases where Control does produce
a benefit at 40W or 80W, this is either because it shifted one I/O
phase past the end of the run or because failures occurred at favor-
able times relative to checkpoints—no benefit was achieved due to
power shifting.

In the leftmost graph of Figure 5, there are two important inflec-
tion points. When the power limit is less than 60W per node, up
to half of the nodes can be in I/O phases at the same time without
power being lost, so Spread and Control have similar performance.
(Note here that different applications have different numbers of
nodes.) When the power limit is above 60W per node, less than
half of the nodes can be in an I/O phase at a time without power
being lost, so there the difference between Spread and Control in-
creases. Finally, above 70W per node, there is sufficient power in
the system that power will be lost when even just a few nodes are
in I/O phases at the same time. Hence, the benefit of power shifting
diminishes. The middle and rightmost graphs show similar pat-
terns, though performance falls off after the inflection point more
quickly for the rightmost graph.

7.3 Small Numbers of Applications
Our second set of experiments cover scenarios with small num-

bers of concurrent applications, similar to those found on capabil-
ity machines. Reducing the number of applications increases the
probability that straightforward algorithms such as Spread that do
not attempt to schedule I/O phases will be insufficient to get the
full benefit of power shifting. Accordingly, this section explores
scenarios in which there is a significant difference between Spread
and more sophisticated algorithms such as Stagger.

While aligning all applications so that their I/O phases occur
concurrently represents an unlikely situation, we include them to
investigate the potential benefits of Stagger and Control. Accord-
ingly, for the following two subsections, we fix application charac-
teristics instead of using the general ones identified in Section 7.1.
In these tests, the global power limit was set halfway between I/O
phase power and computation power for each application.

7.3.1 Perfect Alignment of I/O Phases
This subsection presents situations in which several applications

with identical attributes (I/O phase time, computation phase time,
number of nodes, and response to power limit changes) are started
at the same time. This means that all of their I/O phases also hap-
pen at the same time, which gives Spread no opportunity to share
power; it represents a near-optimal situation for Stagger or Control.
We do not display Priority in this experiment for the same reason

I/O phases 10%

Power Limit Per Node (Watts)

%
 Im

pr
ov

em
en

t o
ve

r
N

o
S

ha
rin

g
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

40 45 50 55 60 65 70 75 80

I/O phases 30%

Power Limit Per Node (Watts)

%
 Im

pr
ov

em
en

t o
ve

r
N

o
S

ha
rin

g
0

1
2

3
4

5
6

7
8

40 45 50 55 60 65 70 75 80

I/O phases 50%

Power Limit Per Node (Watts)

%
 Im

pr
ov

em
en

t o
ve

r
N

o
S

ha
rin

g
0

2
4

6
8

10
12

40 45 50 55 60 65 70 75 80

Spread Control

Figure 5: Average percentage improvement under different power limits with I/O phases consuming 10% (left), 30% (middle), and
50% (right) of the time.

I/O phases 10%

Number of Applications

%
 Im

pr
ov

em
en

t o
ve

r
N

o
S

ha
rin

g
0

1
2

3
4

2 3 4 5 6

I/O phases 30%

Number of Applications

%
 Im

pr
ov

em
en

t o
ve

r
N

o
S

ha
rin

g
0

2
4

6
8

10
12

2 3 4 5 6

I/O phases 50%

Number of Applications

%
 Im

pr
ov

em
en

t o
ve

r
N

o
S

ha
rin

g
0

2
4

6
8

10
12

14

2 3 4 5 6

Stagger Control

Figure 6: Average percentage improvement with I/O phases aligned and consuming 10% (left), 30% (middle), and 50% (right) of
the time.

as in Section 7.2.1.
Figure 6 shows, for three different I/O phase percentages, im-

provement over the baseline (no power shifting) for different num-
bers of applications using Stagger and Control. As expected, Stag-
ger achieves similar improvement to Control; both shift I/O phases
to ensure they do not overlap, but Control does so without incurring
the cost of delays. Also note that the magnitude of the improvement
increases as the percent of time spent in I/O phases increases. This
is expected because more time in I/O phases means there is more
opportunity to shift power. As discussed above, Spread achieves
no improvement in any of these experiments and so is omitted.

Several aspects of this figure deserve more attention. First, in
all 3 graphs there is a dip in the performance of Stagger when five
applications are executing. This occurs because Stagger creates a
second group for the fifth application, so the first and fifth appli-
cations execute their I/O phases at roughly the same time, which
reduces the efficiency of the power shifting.

Second, the Control algorithm consistently achieves better per-
formance for odd numbers of applications than for even numbers
of applications. This is due to the non-linear relationship between
power and performance—shifting extra power to an application at
a low power limit results in more improvement than shifting the
same amount of power to an application that is already at a high
power level. When there is an even number of applications, Con-
trol allows applications to enter I/O phases in 2 groups—first, half
of the applications execute their I/O phases, and when they finish,
the other half execute their I/O phases. This puts all applications
at their max power level for a short period of time. When there

is an odd number of applications, one of the applications becomes
an “odd application out” and must execute its I/O phase separately
from the other applications to prevent power being lost. The ulti-
mate result is that applications are given a smaller amount of extra
power for a longer amount of time, which results in better improve-
ment than giving applications a large amount of power for a short
amount of time.

Both algorithms run into difficulty in the rightmost graph (I/O
phases 50% of the time), as evidenced by their widely varying per-
formance at different numbers of applications. Note that in this
case, applications spend roughly the same amount of time in I/O
phases as they do in computation phases. Thus, for even numbers
of applications, Stagger ends up aligning applications well; tak-
ing four applications as an example, the first application is in an
I/O phase at the same time as the third application, and the second
application is in an I/O phase at the same time as the fourth applica-
tions. Thus, half of the applications are in I/O phases at any given
time, so little power is lost. However, if there is an odd number of
applications, more than half of the applications will end up in I/O
phases at the same time, so power is guaranteed to be lost.

Control shows relatively poor performance here because it is up
against the limit on the amount of time it will delay an application.
For even numbers of applications, it allows half of the applications
to enter I/O phases and delays the I/O phases of the other half of
the applications. However, halfway through the I/O phase, the sec-
ond set of applications reaches the limit on the amount of time an
I/O phase can be delayed and start their I/O phases. Thus, all of
the applications are in I/O phases for a significant period of time,

I/O phases 10%

Number of Applications

%
 Im

pr
ov

em
en

t o
ve

r
N

o
S

ha
rin

g
0

1
2

3
4

2 3 4 5 6

I/O phases 30%

Number of Applications

%
 Im

pr
ov

em
en

t o
ve

r
N

o
S

ha
rin

g
0

2
4

6
8

10
12

2 3 4 5 6

I/O phases 50%

Number of Applications

%
 Im

pr
ov

em
en

t o
ve

r
N

o
S

ha
rin

g
0

2
4

6
8

10
12

14

2 3 4 5 6

Spread Stagger Control

Figure 7: Average percentage improvement with I/O phases partially aligned and consuming 10% (left), 30% (middle), and 50%
(right) of the time.

which reduces the efficiency of the algorithm. For odd numbers
of applications, a similar effect happens, but it is mitigated by the
fact that the two groups of applications are different sizes, which
causes applications to be sped up by different amounts and begins
to naturally stagger the I/O phases.

7.3.2 Partial Alignment of I/O Phases
Figure 7 shows identical information to Figure 6 except that ap-

plication start times are staggered by half the length of an I/O phase.
Thus (in the absence of power shifting), the first half of the I/O
phase of application i overlaps with the second half of the I/O phase
of application i − 1. This is a more realistic situation in which
Spread has at least some opportunity to shift power. Stagger and
Control exhibit roughly similar behavior as that in Figure 6 except
that Control is able to achieve larger improvements when applica-
tions spend a large percentage of the time in I/O phases. As noted
in the previous section, when applications spend 50% of the time
in I/O phases, Control is up against its limit in the amount of time it
will delay an I/O phase, so several I/O phases end up overlapping.
With partially aligned I/O phases, the amount of delay required to
stagger I/O phases is significantly less, so Control is well within its
limit.

At two applications, Spread is only able to achieve a small amount
of improvement because when both applications are in I/O phases,
there are no other applications to accept shifted power. As the num-
ber of applications increases, this situation is mitigated, until at six
applications, Spread’s performance is indistinguishable from that
of Control. We also see that with enough applications spending a
high enough amount of time in I/O phases, Spread starts to outper-
form Stagger. This is because Stagger will continue to stagger I/O
phases and incur the cost of delays, even when it is unnecessary.

In the rightmost graph of Figure 7, Spread achieves a dramatic
improvement with four applications, and Stagger and Control achieve
similar improvements in some of the tests with two, four, and six
applications. In all of these cases, applications spend half their time
in I/O phases, and half of the applications are in I/O phases at any
given time. This is the best possible scenario for power shifting:
applications spend half of their time in computing and benefit from
power shifted from other applications during the entire computa-
tion phase, and then spend the other half of their time providing
power that can be shifted to other applications. As these figures
show, that can result in improvements in excess of 12%.

8. RELATED WORK
This section discusses work related to this paper. We discuss

power-constrained supercomputing, power shifting within a single
application, and advanced checkpointing techniques and their im-
pact.

8.1 Power-Constrained Supercomputing
The power limit specified by the Department of Energy for ex-

ascale systems is 20 megawatts. Several researchers have studied
different aspects of executing high-performance computing (HPC)
applications under a power bound.

One approach is to use overprovisioning, in which there are more
nodes than can be fully powered without violating the facility power
bound. System software then determines how to “reconfigure” the
nodes for a particular application [30, 34] or for multiple applica-
tions [31, 33, 12, 13]. Mechanisms such as Intel’s Running Average
Power Limit (RAPL) [8] allow power to be explicitly allocated to
different machine components, including the CPU and memory.

One disadvantage of RAPL is that it only adjusts the frequency
and voltage settings, which may not be best for performance. There
are other techniques that have been used to limit power consump-
tion while maintaining good performance. One common technique
is dynamic concurrency throttling, where the number of active cores
is reduced [9, 7, 22, 23].

8.2 Power Shifting Within an Application
There have been many systems and techniques developed to move

power within a single application. Generally speaking, the idea is
to exploit load imbalance to shift power from nodes off of the crit-
ical path to those on the critical path. Marathe et al. [27] move
power by resetting RAPL-based power caps. Their work was mo-
tivated by work on saving energy on off-critical path nodes (rather
than shifting power), which included systems such as Adagio [32],
CPU-Miser [15], and Jitter [20]. PowerShifter differs from all of
these systems in that it shifts power between applications, rather
than within an application.

8.3 Power Shifting Between Applications
There has been some recent work on shifting power between dif-

ferent applications. Ellsworth et al. [11] collects excess power by
determining the per-node difference between the power cap and the
consumed power. Nodes with sufficiently large differences donate
power to nodes with small (or zero) difference. Liu et al. [25] clas-
sifies phases—by inspecting hardware counters—as CPU, I/O, or
“undetermined” and then shift power from inferred I/O phases to
inferred CPU phases.

PowerShifter differs from the above two approaches in two ways.

First, PowerShifter uses semantic information about applications,
which allows avoidance of situations in which, for example, quickly
changing power consumption leads to hysteresis. Second, Power-
Shifter uses this semantic information to create two sophisticated
algorithms (Stagger and Control).

8.4 Advanced Checkpointing
Checkpointing is still the most dominant technique to achieve re-

silience and can either be managed by the system transparently to
the application, as in BLCR [17], or explicitly performed by the ap-
plication itself. The latter requires modifications to the application,
but provides additional optimization potential in terms of timing
checkpoints and reducing their size and is the most common type
of checkpointing on HPC systems.

Our work is mostly orthogonal to the type of checkpointing used,
as long as we can determine the checkpoint interval and duration ei-
ther by application instrumentation or by integrating our techniques
into checkpoint libraries such as BLCR [17] or SCR (The Scal-
able Checkpoint/Restart Library) [29]. However, with the grow-
ing scale of systems, checkpointing itself faces challenges, which
require new approaches like the use of NVRAM in the form of
in-system burst buffers [24, 36], asynchronous transfers of check-
points [35], or checkpoint compression [19]. The use of such tech-
niques will impact the power draw and cause more complicated
shifts of varying magnitudes from different components (from the
CPU, to the memory system all the way to the I/O system) and
at potentially higher frequencies [29]. These developments will
likely require extensions to our power shifting scheme to main-
tain global power efficiency, yet will make the key idea behind
our approach—integrating knowledge of the checkpointing process
into power shifting decisions—even more critical.

9. SUMMARY
A major challenge for near-future exascale systems is the DOE’s

20 MW power bound. System software will need a major over-
haul in order to achieve the high performance required for scien-
tific discovery while still honoring this power bound. In this paper,
we explore an opportunity for significant performance improve-
ment by shifting power from applications executing in I/O phases to
those executing in computation phases. We present the design and
implementation of four different algorithms for shifting power—
two straightforward and two more complex—and evaluate them in
both a simulator, and in a validation in a real implementation. We
showed that staggering applications to avoid I/O phase overlap and
externally controlling I/O phases can provide significant benefit.
Results in PowerShifter show that our algorithms achieve signifi-
cant performance improvement compared to no power sharing.

The algorithms we developed and the results from our simulator
and implementation have the potential to have impact on future sys-
tem software that must optimize performance under a power con-
straint. For example, job schedulers can implement our algorithms
or variations of them based on their system usage characteristics.
Contrary to naive expectations, we found that straightforward al-
gorithms performed quite well with a large number of concurrent
jobs as found on capacity systems. This finding will be of ben-
efit to schedulers for capacity systems that may already be over-
loaded with the overhead of managing a large number of jobs, since
the simpler algorithms are less computationally expensive. On the
other hand, on capability systems, more complex algorithms may
be necessary and may be worth a more expensive scheduling algo-
rithm.

Acknowledgment
This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. LLNL-CONF-669729.

10. REFERENCES
[1] ASC sequoia benchmark codes.

http://asc.llnl.gov/sequoia/benchmarks/,
2009.

[2] G. Allen, W. Benger, T. Dramlitsch, T. Goodale, H. C. Hege,
G. Lanfermann, A. Merzky, T. Radke, E. Seidel, and J. Shalf.
Cactus Tools for Grid Applications. Cluster Computing,
4(3):179–188, 2001.

[3] S. Amarasinghe and et al. ExaScale Software Study:
Software Challenges in Extreme Scale Systems.
http://users.ece.gatech.edu/mrichard/
ExascaleComputingStudyReports/ECSS%
20report%20101909.pdf, Sept. 2009.

[4] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller,
S. Karp, S. Keckler, D. Klein, P. Kogge, R. Lucas,
M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling,
R. S. Williams, and K. Yelick. ExaScale Computing Study:
Technology Challenges in Achieving Exascale Systems.
http:
//www.science.energy.gov/ascr/Research/
CS/DARPAexascale-hardware(2008).pdf, Sept.
2008.

[5] V. Bulatov, W. Cai, M. Hiratani, G. Hommes, T. Pierce,
M. Tang, M. Rhee, K. Yates, and T. Arsenlis. Scalable Line
Dynamics in ParaDiS. In Supercomputing, Nov. 2004.

[6] K. W. Cameron, R. Ge, and X. Feng. High-Performance,
Power-Aware Distributed Computing for Scientific
Applications. IEEE Computer, 38(11), 2005.

[7] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S.
Nikolopoulos. Online Power-Performance Adaptation of
Multithreaded Programs using Hardware Event-Based
Prediction. In International Conference on Supercomputing,
2006.

[8] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and
C. Le. RAPL: Memory Power Estimation and Capping. In
Proceedings of the 16th ACM/IEEE International
Symposium on Low Power Electronics and Design, ISLPED
’10, pages 189–194, 2010.

[9] Y. Ding, M. Kandemir, P. Raghavan, and M. Irwin. A Helper
Thread Based EDP Reduction Scheme for Adapting
Application Execution in CMPs. In International Parallel
and Distributed Processing Symposium (IPDPS), 2008.

[10] M. Diouri, O. Gluck, L. Lefèvre, and F. Cappello. Energy
Considerations in Checkpointing and Fault Tolerance
Protocols. In IEEE/IFIP 42nd International Conference on
Dependable Systems and Networks Workshops (DSN-W),
pages 1–6, 2012.

[11] D. A. Ellsworth, A. D. Malony, B. Rountree, and M. Schulz.
POW: System-wide Dynamic Reallocation of Limited Power
in HPC. In Symposium on High-Performance Distributed
Computing, Jun 2015.

[12] M. Etinski, J. Corbalan, J. Labarta, and M. Valero.
Optimizing Job Performance Under a Given Power
Constraint in HPC Centers. In Green Computing Conference,
pages 257–267, 2010.

[13] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Linear
Programming Based Parallel Job Scheduling for Power
Constrained Systems. In International Conference on High
Performance Computing and Simulation, pages 72–80, 2011.

[14] D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik, and
P. Wong. Theory and Practice in Parallel Job Scheduling. Job
Scheduling Strategies for Parallel Processing, pages 1–34,
1997.

[15] R. Ge, X. Feng, W. Feng, and K. W. Cameron. CPU
MISER: A Performance-Directed, Run-Time System for
Power-Aware Clusters . In International Conference on
Parallel Processing, 2007.

[16] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke,
E. Seidel, and J. Shalf. The Cactus Framework and Toolkit:
Design and Applications. In Vector and Parallel Processing
– VECPAR’2002, 5th International Conference, Lecture
Notes in Computer Science, Berlin, 2003. Springer.

[17] P. H. Hargrove and J. C. Duell. Berkeley Lab
Checkpoint/Restart (BLCR) for Linux Clusters. Journal of
Physics: Conference Series, 46(1):494, 2006.

[18] Intel. Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B. System Programming Guide, Part 2.
http://www.intel.com/content/dam/www/
public/us/en/documents/manuals/64-ia-32-
architectures-software-developer-vol-3b-
part-2-manual.pdf.

[19] T. Z. Islam, K. Mohror, S. Bagchi, A. Moody, B. R.
De Supinski, and R. Eigenmann. McrEngine: A Scalable
Checkpointing System Using Data-Aware Aggregation and
Compression. In High Performance Computing, Networking,
Storage and Analysis (SC), 2012 International Conference
for, pages 1–11. IEEE, 2012.

[20] N. Kappiah, V. W. Freeh, and D. K. Lowenthal. Just In Time
Dynamic Voltage Scaling: Exploiting Inter-Node Slack to
Save Energy in MPI Programs. Journal of Parallel and
Distributed Computing, 68:1175–1185, 2008.

[21] M. Kurokawa. Parallel Workload Archives.
http://www.cs.huji.ac.il/labs/parallel/
workload/l_ricc.

[22] D. Li, B. R. de Supinski, M. Schulz, K. W. Cameron, and
D. S. Nikolopoulos. Hybrid MPI/OpenMP Power-Aware
Computing. In 24th IEEE International Parallel and
Distributed Processing Symposium, Apr. 2010.

[23] D. Li, D. S. Nikolopoulos, K. W. Cameron, B. R.
de Supinski, and M. Schulz. Power-Aware MPI Task
Aggregation Prediction for High-End Computing Systems.
In 24th IEEE International Parallel and Distributed
Processing Symposium, Apr. 2010.

[24] N. Liu, J. Cope, P. H. Carns, C. D. Carothers, R. B. Ross,
G. Grider, A. Crume, and C. Maltzahn. On the Role of Burst
Buffers in Leadership-Class Storage Systems. In Symposium
on Mass Storage Systems and Technologies, MSST 2012,
April 2012.

[25] Z. Liu, J. Lofstead, T. Wang, and W. Yu. A Case of
System-Wide Power Management for Scientific
Applications. In International Conference on Cluster
Computing, Sept 2013.

[26] R. Lucas et al. Top Ten Exascale Research Challenges: DOE
ASCAC Subcommittee Report. http://science.
energy.gov/~/media/ascr/ascac/pdf/
meetings/20140210/Top10reportFEB14.pdf,
Feb 2014.

[27] A. Marathe, P. Bailey, D. K. Lowenthal, B. Rountree,
M. Schulz, and B. R. de Supinski. A Run-Time System for
Power-Constrained HPC Applications. In International
Supercomputing Conference, July 2015.

[28] E. Meneses, O. Sarood, and L. V. Kale. Assessing Energy
Efficiency of Fault Tolerance Protocols for HPC Systems. In
Computer Architecture and High Performance Computing
(SBAC-PAD), 2012 IEEE 24th International Symposium on,
pages 35–42. IEEE, 2012.

[29] A. Moody, G. Bronevetsky, K. Mohror, and B. R.
de Supinksi. Design, Modeling, and Evaluation of a Scalable
Multi-level Checkpointing System. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, SC’10,
LLNL-CONF-427742, November 2010.

[30] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and
B. de Supinski. Exploring Hardware Overprovisioning in
Power-Constrained, High Performance Computing. In
International Conference on Supercomputing, June 2013.

[31] T. Patki, A. Sasidharan, M. Melarth, D. K. Lowenthal,
B. Rountree, M. Schulz, and B. de Supinski. Practical
Resource Management in Power-Constrained, High
Performance Computing. In High-Performance Distributed
Computing, June 2015.

[32] B. Rountree, D. Lowenthal, B. de Supinski, M. Schulz,
V. Freeh, and T. Bletch. Adagio: Making DVS Practical for
Complex HPC Applications. In International Conference on
Supercomputing, June 2009.

[33] O. Sarood, A. Langer, A. Gupta, and L. V. Kale. Maximizing
Throughput of Overprovisioned HPC Data Centers Under a
Strict Power Budget. In Supercomputing, Nov. 2014.

[34] O. Sarood, A. Langer, L. V. Kale, B. Rountree, and B. R.
de Supinski. Optimizing Power Allocation to CPU and
Memory Subsystems in Overprovisioned HPC Systems. In
IEEE International Conference on Cluster Computing, pages
1–8, Sept 2013.

[35] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R.
de Supinksi, N. Maruyama, and S. Matsuoka. Design and
Modeling of a Non-blocking Checkpointing System. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
SC’12, LLNL-CONF-554431, November 2012.

[36] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R.
de Supinski, N. Maruyama, and S. Matsuoka. A User-level
Infiniband-based File System and Checkpoint Strategy for
Burst Buffers. In Proceedings of the 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid’14), May 2014.

[37] E. Seidel and W. Suen. Numerical Relativity as a Tool for
Computational Astrophysics. Journal of Computational and
Applied Mathematics, 109(1-2):493–525, 1999.

[38] K. Shoga and B. Rountree. libmsr. https:
//github.com/scalability-llnl/libmsr.

[39] A. Yoo, M. Jette, and M. Grondona. SLURM: Simple Linux
Utility for Resource Management. In Job Scheduling
Strategies for Parallel Processing, volume 2862 of Lecture
Notes in Computer Science, pages 44–60. Springer-Verlag,
2003.

