Exploring the MPI Tool Information
Interface: Features and Capabilities

+

Abstract

The latest version of the MPI Standard, MPI 3.0, includes a new interface, the MPI Tools Information Interface
(MPI_T), which provides tools with access to MPI internal performance and configuration information. In combi-
nation with the complementary and widely used profiling interface, PMPI, it gives tools access to a wide range of
information in an MPI implementation independent way.

In this paper, we focus on the new functionality offered by MPI_T and present two new tools to exploit this new
interface by providing users with new insights about the execution behavior of their codes: VARLIST allows users to
query and document the MPI environment and GYAN provides profiling information using internal MPI performance
variables. Together, these tools provide users with new capabilities in a highly portable way that previously required
in-depth knowledge of individual MPI implementations, and demonstrate the advantages of MPI_T. In our case
studies, we demonstrate how MPI_T enables both MPI library and application developers to study the impact of an
MPI library’s runtime settings and implementation specific behaviors on the performance of applications.

Index Terms

MPI, MPI_T, tools interface, performance counters

1 INTRODUCTION

From its inception, the Message Passing Interface (MPI) Standard [1] provided portable support
for tools through the MPI profiling interface, PMPI. PMPI offers a portable mechanism for tools
to intercept MPI calls and to wrap the actual execution of MPI routines with profiling code. This
approach was widely successful and has been used to implement a wide range of both profiling
tools, like mpiP [2] or IPM [3], and tracing tools, like OTFtrace [4] and Score-P [5]. Additionally,
the interface found a wide use beyond the original intended purpose of performance profiling, e.g.,
in correctness tools like MUST [6] or DAMPI [7] or for application support, e.g., by implementing
virtualization of resources by transparently partitioning MPI_COMM_WORLD [8] or to remap MPI
processes at startup.

Overall, the definition of PMPI in the standard has been the fundamental enabler for a rich set of
portable tools, unlike with any other parallel programming model. However, PMPI focuses solely
on capturing the interaction between the application and the MPI library; it does not allow insights
into what is happening inside the MPI library, which can have performance critical implications.
While previous approaches, such as PERUSE [9], [10], have attempted to address this shortcoming,
they have failed in the standardization process, leaving users to rely on implementation specific
hacks to extract such information.

However, in recent years, the MPI Forum developed a new interface for standardizing access to
internal MPI library information, the MPI Tool Information Interface (MPI_T), which was adopted
into the MPI 3.0 Standard [11]. One of the key differences between MPI_T and previous approaches
is that MPI_T does not make any explicit assumptions about what information an implementation
will provide nor demands certain information to be delivered since it may not be available in a
particular implementation. Instead, it allows each implementation to decide what information to
expose and then provides an interface for users to query what information is available.

MPL_T exposes internal MPI library information in the form of wvariables, typed buffers main-
tained and updated by the MPI library, which can be read and in some cases written. MPI_T

offers two groups of variables: performance variables, which provide information about internal
MPI performance information analogously to hardware counters for processor performance; and
control variables, which expose MPI configuration information for users to both document the
exact runtime environment of their codes and to adjust configuration settings, e.g., for performance
tuning purposes.

In this paper, we describe two publicly-available tools, which are, to the best of our knowledge,
the first to exploit the MPI_T interface [12]. VARLIST queries the set of available performance and
control variables and can be used to automatically extract and store configuration information.
GYAN is a light-weight profiler that captures the performance information exposed by the perfor-
mance interface of MPI_T. In particular, we make the following contributions:

o A user’s introduction to the recently ratified MPI Tool Information Interface, MPI_T;

o VARLIST, a tool that helps users document their runtime environment;

o GYAN, the first profiler exploiting MPI_T information;

« Case studies showing information MPI_T can capture and how the information can be used.

Together, these two tools show the flexibility and versatility of the new interface and demonstrate
the new opportunities users can gain from tools built on top of MPI_T.

The remainder of the paper is organized as follows: Section 2 introduces the MPI_T interface and
provides a quick tutorial for users; Sections 3 and 4 present the usage of VARLIST and the design
of the GYAN profiler; Section 5 shows case studies using VARLIST and GYAN on benchmarks and
selected real applications; Section 6 provides our experience with working with the MPI_T interface;
Section 7 details related work; and Section 8 concludes with a discussion of future options for tools
built on top of MPI_T.

2 THE MPI_T INTERFACE

The PMPI interface enables standardized and platform independent access for tools; however, it
limits users to observing only the interactions between the application and the MPI implementation.
The newly defined MPI tools information interface addresses this shortcoming by providing an
interface to access and control the internals of an MPI implementation.

2.1 Basic Concepts

All information within MPI_T is managed through named performance and control variables,
each representing a typed buffer that contains internal MPI information. Since MPI_T does not
explicitly state any required variables, the interface offers a query mechanism to discover the
variables available in the MPI library. Users of the interface can first query the number of available
performance or control variables N, and then iterate over the complete space of variables referenced
by indices 0 to N — 1. Using this index, the user can query comprehensive metadata information,
including the name and the type of a variable together with an optional textual description. Once
a user has identified a variable of interest, he or she can use that index to generate a handle to the
variable, and then use it to read from and (in some cases) write to the variable. During the handle
creation process, variables can also be bound to a particular MPI object, such as a communicator or
Remote Memory Access (RMA) window, which allows users to specialize a variable to a particular
object.

Control variables can be used to discover and define the behavior of MPI implementations. Ex-
amples include the definition of protocols, specification of eager limits, or selections of collective
communication algorithms. The interface offers both read and write access (if implemented by the
MPI library). The write functionality can be used by applications to configure themselves or even
by auto-tuning systems [13].

Performance variables represent performance critical information from within the library, such
as Unexpected Message Queue (UMQ) lengths or memory consumption of the MPI library. The
functionality is similar to that of control variables, but performance variables require an additional

indirection: each variable needs to be part of a session and performance data will be relative to
this session only. This enables the use of multiple simultaneous tools by providing proper isolation.
Once a handle is allocated, users can start and stop as well as read and reset performance variables,
which allows for the easy implementation of calipers. This functionality is similar to the well known
PAPI interface [14] used for hardware counters.

Depending on the MPI implementation, MPI_T potentially exposes a large number of variables
and users need the ability to categorize them. MPI_T offers two concepts for this purpose: ver-
bosity and categories. The verbosity is an integer value that is returned by the metadata query call
mentioned above and describes the “importance” of a variable (ranging from “this is an important
variable designed for the end user” to “this is a detail variable intended only for MPI library
developers”). Beyond this, categories enable a hierarchical grouping of variables referring to similar
concepts, resources or performance problems (e.g., all variables related to communication or all
variables related to communication protocol configuration). Categories, as with variables, are not
predetermined, but offered by the MPI implementation and can be queried by the user.

2.2 Comparison with PERUSE

Before the inception of MPI_T, there was another concerted effort to extract information about
the internals of MPI implementations: PERUSE [9], [10]. PERUSE was an international endeavor,
developed by parties in government laboratories, universities, and industry. Although it was never
adopted into the MPI Standard, the partially completed specification serves as a wealth of documen-
tation of the kinds of information helpful for understanding application behavior and performance.

In PERUSE, MPI implementations use callbacks to notify registered tools or applications when
certain internal MPI events occur. The interface defines events of interest and also allows MPI
implementations to register their own implementation-specific events. Examples of events defined in
PERUSE include “message activation” and “message transfer initiation” that refer to the times when
MPI starts processing a message request and when it actually begins the data transfer, respectively.
PERUSE defines a large number of events related to message transfers and message queues, and
before the effort was ended, participants had begun to develop event definitions for collective
communications, MPI 1/O, one-sided communication, MPI object naming, and dynamic process
creation. As part of the PERUSE specification, PERUSE-compliant MPI implementations are required
to support all PERUSE functions and data types, but if a particular defined event does not directly
correlate to internal MPI implementation mechanisms or would incur undue overhead to support,
implementors are encouraged to simply not supply that event.

Despite the efforts in defining the PERUSE specification, it was not adopted into the MPI Stan-
dard. The main argument against PERUSE was the definition of MPI internal events that could be
a potential mismatch for some MPI implementations. Although implementations were free to omit
support for variables at will, there was concern that in the quest to be competitive for procurement
bids, the MPI implementations would need to support events that didn’t make sense or incurred
high overhead. Additionally, there were arguments against the callback-based design. Some felt
that the use of callbacks essentially dictated PERUSE implementation choices, while others held
concerns about compatibility of callbacks with Fortran programs.

MPI_T was designed in response to the criticism against PERUSE. Tool developers and perfor-
mance analysts still desired internal information from MPI libraries [15], [16], but realized defining
events that satisfied all MPI implementations was a herculean task. Thus, the MPI_T interface does
not define any variables, but allows each implementation to provide only what makes sense for
that particular implementation. While this does pose a burden on tool developers and analysts, the
general feeling is that it is better to have information that comes with challenges in interpretation
than to have no information at all.

The primary differences between PERUSE and MPI_T are in the definition of what internal
MPI information is provided and the mechanism for providing the information. As stated before,
PERUSE defines events to represent MPI internal processes in its specification, while MPI_T leaves

the definition of the exposed information entirely up to the MPI implementation. The mechanisms
for providing the information for each interface differs. In PERUSE, tools are notified of event
occurrences via callbacks. However, in MPI_T tools explicitly query the MPI implementation for
information on-demand.

Despite these differences, PERUSE and MPI_T have commonalities. For one, both interfaces
support layering of performance tools, meaning multiple tools can utilize the interface concurrently
in the same application. This functionality is important since typically each tool only extracts a par-
ticular subset of the available information. By combining information from multiple tools, analysts
can acquire a full picture of application behavior [17]. Secondly, both MPI_T and PERUSE provide
a query interface to determine what information will be provided by the MPI implementation at
runtime. This is required for both interfaces since with MPI_T a tool cannot know a priori what
variables will be provided, and with PERUSE, a tool won’t know which of the events are supported.

3 QUERYING MPI_T WITH VARLIST

The MPI_T information interface specification does not prescribe any particular sets of variables.
Instead, it offers users a mechanism to query all existing variables, performance or control, together
with metadata and descriptions. Users therefore need a way to list all available variables in order
to extract what variables can be used on a particular implementation.

Our tool VARLIST fulfills this requirement. It lists all available control and performance variables
offered by a particular MPI library and thereby basically creates an automatic self-documentation
feature for the MPI_T capabilities of a particular MPI library implementation. Users can request
a short overview of variables, a list with all metadata and complete descriptions, a list limited to
variables of a particular verbosity level, or a list of variables offered before or after MPI_Init
(which may influence variable availability as well as writability). With the VARLIST tool, a user can
list either control and performance variables separately at different verbosity levels, or can list all
information along with long descriptions provided by the particular MPI implementation.

One particular use case for this tool, aside from helping users to decide what they can profile or
extract with tools like GYAN, is to help in documenting the environment and runtime settings for a
particular run. By running VARLIST at job start and dumping all control variables and their current
values, users can get a snapshot of the MPI runtime settings for that run. This enables them to
identify possible problems, help with debugging of runtime problems, or to improve experiment
and execution reproducibility.

4 GYAN: PROFILING USING MPI T

GYAN is Sanskrit for “knowledge”. We developed GYAN to offer knowledge about the internal
performance of an MPI implementation. GYAN uses the PMPI interface to profile MPI_T perfor-
mance variables over the course of an MPI job execution. Since performance variables will vary
in name and in number depending on the MPI implementation used and possibly across different
versions of the same MPI library, GYAN provides two ways to select which performance variables
to monitor. The user of GYAN can select a specific performance variable using the environment
variable MPIT_VAR_TO_TRACE, or simply let the tool monitor all performance variables exposed
by the MPI implementation being used that are not tied to a specific MPI object. The latter alleviates
the potential for mistakenly setting a performance variable that is not exposed by that particular
MPI implementation or for setting the wrong one that does not provide useful information for the
targeted performance problem, but comes with a possibly larger overhead.
Algorithm 1 presents the steps taken by GYAN in accessing and reporting the status of perfor-
mance variables after an MPI application is run:
o A user sets the variable MPIT_VAR_TO_TRACE with specific performance variable names to
monitor; alternatively, if this variable is left unset, GYAN reports the status of all performance
variables internal to the MPI implementation;

Algorithm 1 Algorithmic steps of GYAN.

Input: Set MPIT_VAR_TO_TRACE (optional)
1: function MPI_INIT > Intercepts MPI_Init call of an application
2: Call PMPI_Init and MPI_T_init_thread

3 Get number of available variables using MPI_T_pvar_get_num

4 Create a session using MPI_T_pvar_session_create

5: Allocate handles for all performance variables

6: if MPIT VAR _TO_TRACE is not set then

7

8

9

Set all performance variables to the watch list

else
Set variables in MPIT_VAR_TO_TRACE to the watch list

10: for each variable in the watch list do
11: Initialize data structures for reading values
12: Start session using MPI_T_pvar_start
13: function PVAR_READ_ALL > Reads current status of all watched variables
14: for each variable in the watch list do
15: Read the current status of this variable’s current session using MPI_T_pvar_read
16: Copy values to a pre-allocated buffer
17: function MPI_FINALIZE > Intercepts MPI_Finalize call of an application
18: Read current values of all watched variables using pvar_read_all
19: Compute sum, minimum, and maximum of all variables across all ranks

20: Rank 0 reports the output

21: Stop watching variables

22: Cleanup all data structures initialized for reading values

23: Call PMPI_Barrier to ensure all processes reached this point
24: Close the MPL_T library with a call to MPI_T_finalize

25: Finalize the MPI library with a call to PMPI_Finalize

e Once an MPI application starts running, GYAN intercepts the call to MPI_Init and initializes
the library with a call to PMPI_TInit;

o GYAN then creates a session, filters all variables that are not tied to a particular MPI object,
attaches performance variables within the MPI_T interface to this session, reads the variables’
initial values using MPI_T_pvar_read and starts monitoring the selected variables by calling
MPI_T_pvar_start for each;

o At the end of the application’s execution, GYAN intercepts MPI_Finalize, reads the values of
all monitored performance variables again by calling MPI_T_pvar_read, reports the difference
between the values and the corresponding values read during initialization in an easily readable
format; and cleans up the library before finalizing MPL

GYAN continuously monitors programs from start to finish to report a cumulative status of all

performance variables. This is partly because the two MPI implementations we worked with only
supported a single session at the time of our experiments. Once MPI implementations provide multi-
session support, GYAN can be extended to report more advanced and fine-grained performance
measures. The usage of GYAN is straightforward since it has no dependence on any other library
or package. As any other PMPI tool, it can be either preloaded via LD_PRELOAD or linked with an
application, and can collect data without perturbing the performance of an application.

5 EXPERIMENTS

In the following, we present three case studies showing the kind of information VARLIST and GYAN
can provide and how this can help users in application execution and optimization. In the first case

[VARIABLE | DESCRIPTION]
posted_recvg_match Counts how many times the queue for receiving expected messages is read.
unexpected_recvg_match Counts how many times the queue for receiving unexpected messages is read.
progress_poll_count Counts how many times the application polls the progress of a communication. The
higher the value, the more CPU time is spent in polling.

mem_allocated_level Gives the instantaneous memory usage by the library in bytes.

mem_allocated_highwater Gives the maximum number of bytes ever allocated by the MPI library at a given
process for the duration of the application.

coll_bcast_binom Counts how many of the MPI broadcast collective calls use the Binomial algorithm
during an application run.

num_shmem_coll Counts how many of the collective communication calls are using shared memory.

coll_bcast_shmem Counts how many of the MPI broadcast communication calls are shared memory
based collectives.

TABLE 1: Performance variables in MVAPICH2-2.0a that are presented in Section 5.3 and 5.4.

study, we demonstrate how VARLIST can be used to document relevant settings for a given MPI
application run. In the second and the third case study, we use GYAN with two MPI applications
to report the status of available performance variables as we scale problem size and process count.

5.1 Experimental Setup

We executed our experiments on Cab, one of the Tri-Lab Capacity Clusters (TLCC) at Lawrence
Livermore National Laboratory with 1,296 nodes and a peak performance of around 0.5 PFlop/s.
Nodes in this Linux cluster are connected using a QDR Infiniband interconnect and each have
dual socket 2.6 GHz Intel Sandy Bridge processors with a total of 16 cores as well as 32 GB of
memory. We compiled both codes with the GNU compiler 4.4.7 at optimization level -O2. We used
both OpenMPI-1.9a1r31420 and MVAPICH2-2.0a for the experiments as noted. Table 1 presents
names and descriptions of a subset of performance variables implemented in MVAPICH2-2.0a and
discussed in Sections 5.3 and 5.4!.

In our experiments, we ran the BT benchmark from the NAS Parallel Benchmark suite [18], and
NEKS5000 [19]. BT solves a synthetic system of nonlinear partial differential equations using the
block tridiagonal algorithm. NEK5000 is a Gordon Bell prize-winning computational fluid dynamics
code that captures the thermal-hydraulics phase inside nuclear reactors by simulating unsteady
incompressible fluid flow with thermal and passive scalar transport.

We compared application runtime with no MPI_T monitoring to that with GYAN monitoring all
MPI_T performance variables. The average run times for these two cases were within 0.5% from
each other, which is well below the noise threshold. Hence, our experiments show that monitoring
MPI_T performance variables with GYAN does not incur significant overhead. In addition, VARLIST
takes only 1 second to list all control and performance variables of MVAPICH2-2.0a.

5.2 Case Study I: Use of Varlist

Most MPI implementations provide a set of control variables that can be set through either command
line or environment variables to alter the runtime behavior of the MPI library. These variables can
control aspects of the MPI library that directly impact application performance: e.g., to decide
when an implementation should switch from eager to rendezvous protocols. However, typical
MPI implementations provide users with many configuration options (often with little to no doc-
umentation), making it hard for users to know: a) which configuration options even exist in a
particular implementation; b) what they mean, what behavior they influence and how; and c¢) what
settings are used for a particular option for a given run. Using MPI_T, VARLIST can provide the
documentation for questions a) and b) automatically by running varlist -c -1. This prints all
available configuration variables including any description offered by the MPI library. Furthermore,
for c), users can include VARLIST into their job scripts, to automatically document all settings for

1. Note that variable names have been shortened to make the table more reader friendly.

VARLIST Output
VAR. NAME F VALUE RUNTIME
btl_self_eager_limit | 131072 506
btl_sm_eager_limit 4096 '
btl_self_eager_limit 10 5.08
btl_sm_eager_limit 4096 :
btl_self_eager_limit 10 512
btl_sm_eager_limit 10 :

TABLE 2: Impact of runtime configurations on the performance of NEK5000.

a given run and study the impact of these changes during postmortem analysis. The latter is
particularly useful when done systematically over many/all runs. In case of performance changes,
the output of VARLIST can be used to detect changes in the behavior of the MPI library to previous
executions, which is normally hard to detect.

To demonstrate how changes of control variables can impact the performance of an applica-
tion, we select two control variables from OpenMPI-1.9a1r31420 that control eager limits for short
messages. Since OpenMPI-1.9a1r31420 does not currently support writing to control variables pro-
grammatically, we change these variables by setting the corresponding environment variables.
The variable bt1_self_eager_limit in OpenMPI-1.9a1r31420 sets the maximum size of short
messages, and bt1_sm_eager_limit sets the same for eager protocols using shared memory. We
randomly change their values to 10, and use VARLIST to verify these changes, and then record
the runtime of NEKS5000. Practically, good settings for these control variables will depend on
the configuration of the machine and the communication behavior of the application in question.
Decreasing these values to 10 indicate that MPI will use rendezvous protocols for messages that
are greater than 10 bytes in size.

Table 2 presents the control variables that are modified by setting environment variables, the
output from VARLIST after environment variables were updated, and runtimes of the corresponding
application runs. The first row presents the runtime of NEK5000 with the default setting of eager
limits. After setting control variables, we again run VARLIST to document the current status of
control variables, and record the runtime. Similarly, using VARLIST for multiple configurations,
users can see and understand the impact of different settings on the performance of applications.

5.3 Case Study II: BT from NPB

We use GYAN on the BT benchmark with problem sizes “C” and “D”. The problem size “C” uses
162 x 162 x 162 elements and “D” uses 408 x 408 x 408 elements. The objective of this experiment
is to compare the MPI_T performance variables at scale, and across different problem sizes.

Figures 1a and 1b present performance variables that count how many times incoming messages
were matched with entries in the posted receive queue or were taken from the unexpected message
queue when MPI_Recv was called. The observations that can be made from these two figures are:

First, for the same problem size, increasing the number of MPI processes increases the volume of
communication among processes, as shown by the increasing number of total receives processed
in either queue. This is expected and a typical scaling behavior.

Second, Figure 1a shows that increasing the number of MPI processes to 1024 caused at least one
(or a small number of) MPI process to complete operations through the unexpected receive queue
significantly more than others, since the average value for this variable is much smaller than the
maximum value. Such an observation can instigate further investigation in cases of performance
imbalance in applications to identify the (small) set of processes exhibiting this behavior.

Third, the average number of times the unexpected receive queue is used to receive messages
increases with the increase in problem size for the same number of processes, while the number
of receives completed through the posted receives queue stays the same. This indicates that the
increased traffic caused by scaling the problem no longer arrives at the target nodes in time for a
receive to be posted already, which has the potential to cause more overhead. By tracing this back

16 Z64 "256 ©1024 "16 %64 T256 ©1024

2 1600 2 1600

£ 1400 N £ 1400

£ 1200 \ 5 1200

= \ =

£ 1000 § £ 1000

v wv

§ 800 § § 800

£ 600 § £ 600

-9 N -9

S 400 . N S N S 400 N <

S NN \ S SR ‘

"g 0 = \ 7 & 7 % s & iz & 'g () - — & .% & 7 % PPN -é & - &

2 min max avg min max avg 2 min max avg min max avg
posted_recvq_match unexpected_recvq_match posted_recvq_match unexpected_recvq_match
(a) Problem size 162 x 162 x 162 (b) Problem size 408 x 408 x 408

Fig. 1: GYAN reports the number of times incoming messages were matched by the MVAPICH2-2.0a
library while running BT for two problem sizes with increasing processor counts.

16 %64 "256 N 1024 "16 7264 ©256 V1024
40
35
30
25
£20
=
15
10
5 N
N N N
0 | W § W § A w
m

min max avg

7
m
77772274

7
o
A
.

N N N
0 77\ -Z§ m% lz%l

min max avg min

Amount of memory allocated in

Amount of memory allocated in
M
NN

2 N
.4

in ma:

=3
i)
5
S

oQ

avg
mem_allocated_level mem_allocated_highwater mem_allocated_level mem_allocated_highwater

(a) Problem size 162 x 162 x 162 (b) Problem size 408 x 408 x 408

Fig. 2: GYAN reports the number of bytes of memory allocated by the MVAPICH2-2.0a library while
running BT for two problem sizes with increasing processor counts.

to the MPI operations in the source code, we can now identify the operations that are responsible
for this observed behavior and match them up with the intended message patterns with the goal
of rearranging the messaging schedule.

Further, this information can expose a potential bottleneck in the MPI_Recv implementation. The
unexpected queue must be searched for a matching message each time an MPI_Recv is posted. If
no match is found, it is then enqueued in the posted receive queue. Since MPI implementations
need to set aside memory for buffering unexpected messages, applications with a high number of
such messages can quickly exhaust this buffer space and cause performance loss for applications.

Note, that this is a good example of how the information from MPI_T exposed by GYAN can
be helpful. GYAN extract information from MPI_T to not only alert users of situations like the
bottleneck described above, but can also be deployed by MPI implementors. For implementors,
GYAN can be used to list the utilization of the relevant variables for a new implementation version,
e.g., to compare how optimization changed the message queue utilization, and with that enable
implementors to reason about their code’s performance.

Figures 2a and 2b present performance variables that count the bytes of memory allocated by the

Ml A2 B4 88 716 =32 64 1128 ®140] %2 54 88 716 532 "64 1128 ®140

« 1600 » 70000
i 3
_:é 1400 % 60000
2 1200 2 50000
£ 1000 g %
§ 800 §40000 % g Z
= N 230000 7 < .
£ 600 N . s 7 N é
2 = | R £20000 7 NE =~
S 400 N= NE 5 7 2N = 2N
D NE NE b / N\ / \ = / §
S 200 Nl N i 10000 é% é§§ g§
2 il ol Al 2 | A=l 7NE 7\
2 min max avg min max avg 2 min max avg
posted_recvq_match unexpected_recvq_match progress_poll_count
(a) Receive queue statistics (b) Insights into communication progress

Fig. 3: GYAN results for NEK5000 using MVAPICH2-2.0a with increasing processor counts.

library for two different problem sizes (providing both current values and high water marks).
The observation that can be made from these pictures is that since GYAN reads the value of
memory currently allocated when MPI_Init and MPI_Finalize are called, this value is the same
across both of these problem sizes, showing the minimal footprint the MPI library is using. For
the high water mark, though, there is significant disparity between the maximum and the average
memory footprint across processes (5x for 1024 processes). Such imbalance in memory usage across
processes may lead to poor performance of the entire application if it results in memory thrashing,
as well as to reduced problem sizes that can be computed if applications are designed to allocate
the same amount of application data for each process and hence are limited by the process with
the least amount of available memory. Further investigation needs to be done in order to identify
whether this problem is application dependent or pertains solely to the MPI implementation.

5.4 Case Study lll: NEK5000

In this experiment, we collect all 25 performance variables exposed by MVAPICH2-2.0a for the
production application NEK5000 and present those variables that have nonzero values. The problem
size is moderately large with 140 elements in total simulating the thermal hydraulics phase of a
nuclear reactor. This is a practical problem size used in the nuclear reactor community.

Figure 3 presents performance variables pertaining to four different categories — the receive
queues, communication progress, collective calls, and the amount of memory allocated by the
library. Our observations are presented below.

First, from Figure 3a we can observe that the number of times messages are matched with receives
on the posted message queue increases significantly until 16 processes, and then it drops. Since each
node on the machine has 16 cores, for cases 1 — 16, all processes are packed on the same node and
communicate only using shared memory, which apparently increases the likelihood that receive
operations are executed and posted in time before the corresponding message arrives.

Second, from Figure 3b we can observe that the number of times the progress of communications
being polled is high. This value is directly proportional to the amount of CPU time spent in polling
the progress of communications. A high value therefore indicates significant wait times and with
that potential load imbalances, especially if there is a large gap between min and max values. We
can see the latter behavior for executions of more than 4 processes, which should trigger a deeper
analysis of load balance properties, in particular for codes that almost zero poll times.

MPI implementations often provide configuration variables to enable blocking mode of commu-
nication (in the case of MVAPICH?2-2.0a, it is MV2_USE_BLOCKING). This can reduce the number of
cycles wasted polling for messages and can open up performance improvements for other processes,

10

““MV2_USE_BLOCKING=0 “*MV2_USE_BLOCKING=1 30
35
25
30 §
225 ‘é‘ 20
2 =
320 S5
£ o
£15 F10
2 =
& 10 3
55
5 A~
0 0
1 2 4 P 16 1 64 5 1 2 4 8 16 32 64
Number of processes Number of processes
(a) Absolute runtimes (b) Execution time increase using blocking receives

Fig. 4: Comparing the performance of blocking and non-blocking receives.

M1 A2 B4 88 716 =32 64 128 ®140 M1 %2 T4 N8 716 532 64 128 ®140

_— = =
X S N b
S o o o

Number of operations in hundreds
3
Amount of memory allocated in
M
O

= = NS E
o ot e el il paEl el
min | max | avg | min | max avg min | max | avg min max avg min max avg
coll_bcast_binom | num_shmem_coll |coll_bcast_shmem mem_allocated_level mem_allocated_highwater
(a) Profiling internals of collective routines (b) Profiling memory usage

Fig. 5: GYAN results for NEK5000 using MVAPICH2-2.0a with increasing processor counts.

e.g., in oversubscribed nodes or if communication is handled in multithreaded scenarios, or help
reduce power and energy consumption. However, our experiment (presented in Figures 4a, and 4b)
shows that the blocking mode of communication comes at the price of a increased runtime of
NEK5000 by 28% for the 64 process case. An application can use GYAN to read these internal
performance variables in order to make smart trade-off decisions.

Third, Figure 5a shows that the behavior of MPI collective calls remains consistent as the appli-
cation scales up. This indicates that, as NEK5000 scales up, the number of binomial and shared
memory broadcasts, and the number of shared memory collectives in general, stays stable and at
a 2:1 ratio. This information reported by GYAN shows a global consistent use of collectives that
should allow the application to scale.

Fourth, Figure 5b shows that memory utilization, both instantaneous and highwater marks,
increases with scale. Also, the maximum amount of memory allocated by any process for the
duration of the application is significantly higher than the average value. Since this value is high
for both BT and NEK5000, it may be worth investigating if there is any systematic explanation for
the phenomenon in the MVAPICH2-2.0a library itself.

11

6 DisCcussION

In the previous section, we showed how GYAN and VARLIST can extract internal MPI information
and expose it to users, and how this information can be useful for documenting and understanding
application performance. The standardized interface of MPI_T made the actual development of these
tools straightforward. However, as we stated previously, MPI_T does not prescribe any variables
that should be exposed by MPI implementations; the variables, their definitions, and number are
completely determined by the MPI implementors. This factor complicates tool development because
tools cannot rely on the existence of a particular variable across different MPI implementations,
across implementation versions, or even across different runs, e.g., in the case that different hard-
ware is used. This means that it is extremely challenging for tools to automatically reason about
the collected information, and human interpretation will be needed in many cases. Nonetheless,
despite this complexity, tool developers were in full support of standardizing MPI_T because it
provides the only standardized mechanism for accessing MPI internal data.

In our study, we found that the performance variables exposed by early adopters of MPI_T are
among the most important variables from the literature [15], [20], [21], and include variables that
describe message queues and memory usage. We imagine that in the future, application and tool
developers can suggest more performance variables based on their experience in using the MPI_T
interface that can be used to pinpoint the cause of performance differences due to the internal
implementation of an MPI library. It is unclear whether there will ever be a common set of defined
variables that satisfy all or even most MPI implementations; thus we expect tool developers to
continue to need to write flexible software when using MPI_T.

7 RELATED WORK

Over the years, there have been several efforts to expose internal MPI information to tools and
application developers. The MPI implementors have done this primarily by adopting early versions
of tools interfaces for this purpose, namely PERUSE and MPI_T. The Open MPI implementation
includes support for both PERUSE [22] and MPI_T, while the implementations based on MPICH
currently support MPI_T. The MVAPICH team recently published work showing details of their
support for MPI_T, and discussed and evaluated their design decisions and how it impacted
measurement overheads [20].

Tools developers have worked to gather internal MPI information by directly modifying MPI
implementations and related libraries. This was done because there was no officially adopted
interface at the time of the work. For example, Brightwell et al. instrumented the MPICH library to
gather message queue statistics [15], [21]. Other researchers uncovered internal information about
MPI-1/0O operations by instrumenting MPICH2, ROMIO, and PVFS [16]. They were able to show
underlying low-level details about collective MPI-I/O operations that explained their performance.

With the development of interfaces like PERUSE and MPI_T, tools adopted their use to extract
MPI internal information. Some tools were developed to access PERUSE via the support in Open
MPI [23], [24]. These were focused on accessing message queue information to provide details like
message queue visualizations and metrics including message queue lengths and message queue
search times. In the Periscope Tuning Framework, the developers are using MPI_T to change control
variables in order to automatically tune applications and recommend best topologies [25]. However,
as of this writing, this is a work in progress and not yet available.

8 CONCLUSION

The MPI Tool Information Interface, MPI_T, introduced in MPI 3.0, is a new standardized mech-
anism for tools to gather information about MPI applications. It complements the existing MPI
profiling interface, PMPI, and offers access to both internal performance information and configu-
ration variables. It is based on the concept of typed variables that can be queried, read, and set.
In this paper, we present a first set of tools using MPI_T for accessing, listing, and monitoring
both the control and the performance variables in any MPI implementation. The VARLIST tool

12

currently reads names of all control and performance variables exposed by any MPI implementation.
The GYAN tool monitors performance variables during the execution phase of an application, and
generates statistics for each measured variable. Together the tools provide simplified and MPI
implementation independent access to the internal states of MPI implementations, and enable expert
users to further enhance the performance of their applications by understanding and ultimately
controlling the MPI runtime behavior. In fact, our case studies showed examples of the implications
of changing internal MPI settings and how application execution characteristics can change internal
MPI functioning. For instance, we found that changes to the “eager limit” setting could affect overall
runtime, and that the size of the “unexpected message queue” can change with the number of
processes in the job.

We expect the MPI_T interface to be as successful as the existing PMPI interface and the two
tools presented here to be only the first in a long line of performance, debugging, and correctness
tools exploiting MPI_T.

REFERENCES

[1] “MPI Standard 1.0,” http://www.mpi-forum.org/docs/docs.html.

[2]]. Vetter and C. Chambreau, “mpiP: Lightweight, Scalable MPI Profiling.” [Online]. Available: http://mpip.sourceforge.
net

[3] D. Skinner, “Performance monitoring of parallel scientific applications,” Lawrence Berkeley National Laboratory, Tech.
Rep. LBNL-5503, 2005.

[4] A. Kniipfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel, “Introducing the Open Trace Format (OTF),” in
Computational Science-ICCS 2006. Springer, 2006, pp. 526-533. [Online]. Available: http://mpip.sourceforge.net

[5] D. an Mey, S. Biersdorf, C. Bischof, K. Diethelm, D. Eschweiler, M. Gerndt, A. Kniipfer, D. Lorenz, A. Malony, W. E.
Nagel et al., “Score-P: A Unified Performance Measurement System for Petascale Applications,” in Competence in High
Performance Computing 2010. Springer, 2012, pp. 85-97.

[6] T. Hilbrich, M. Schulz, B. R. de Supinski, and M. S. Miiller, “MUST: A Scalable Approach to Runtime Error Detection
in MPI Programs,” in Tools for High Performance Computing 2009. Springer, 2010, pp. 53-66.

[7 A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. R. de Supinski, M. Schulz, and G. Bronevetsky, “A Scalable and
Distributed Dynamic Formal Verifier for MPI Programs,” in International Conference for High Performance Computing,
Networking, Storage and Analysis (5C). 1EEE, 2010, pp. 1-10.

[8] T. Gamblin, “CRAM: A tool to run many small MPI jobs inside of one large MPI job,” https://github.com/
scalability-1Inl/cram.

[9] R. Dimitrov, A. Skjellum, T. Jones, B. de Supinski, R. Brightwell, C. Janssen, and M. Nochumson, “PERUSE: An MPI
Performance Revealing Extensions Interface,” Sixth IBM System Scientific Computing User Group, 2002.

[10] T. Jones, R. Dimitrov ef al., “MPI PERUSE: An MPI Extension for Revealing Unexposed Implementation Information,”
2006.

[11] “MPI Standard 3.0,” http://www.mpi-forum.org/docs/docs.html.

[12] “Scalability Team MPI Tools,” https://github.com/scalability-llnl/mpi-tools.

[13] 1. Compres, “On-line Application-specific Tuning with the Periscope Tuning Framework and the MPI Tools Interface,”
Presentation at the 2014 Petascale Tools Workshop, Madison, W1, August 2014.

[14] P.J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A Portable Interface to Hardware Performance Counters,” in Proc.
Department of Defense HPCMP User Group Conference, June 1999, pp. 7-10.

[15] R. Brightwell, S. Goudy, and K. Underwood, “A Preliminary Analysis of the MPI Queue Characteristics of Several
Applications,” in Proceedings of the 2005 International Conference on Parallel Processing, ser. ICPP '05. IEEE, 2005, pp.
175-183.

[16]]J. Kunkel, Y. Tsujita, O. Mordvinova, and T. Ludwig, “Tracing Internal Communication in MPI and MPI-I/O,” in
International Conference on Parallel and Distributed Computing, Applications and Technologies. IEEE, Dec 2009, pp. 280-286.

[17] M. Schulz and B. R. de Supinski, “PNMPI Tools: A Whole Lot Greater Than the Sum of Their Parts,” in Proceedings of
the 2007 ACM/IEEE Conference on Supercomputing (SC '07). ACM, Nov 2007, p. 30.

[18] “NAS Parallel Benchmarks (NPB),” https://www.nas.nasa.gov/publications/npb.html.

[19] “Nekbone: A suite of proxy application for nek5000.” [Online]. Available: https://cesar.mcs.anl.gov/content/
software/thermal_hydraulics

[20] R. Rajachandrasekar, J. Perkins, K. Hamidouche, M. Arnold, and D. K. Panda, “Understanding the Memory-Utilization
of MPI Libraries: Challenges and Designs in Implementing the MPI_T Interface,” in Proceedings of the 21st European
MPI Users” Group Meeting (EuroMPI/Asia’14). ACM, September 2014, p. 97.

[21] R. Brightwell, K. Pedretti, and K. Ferreira, “Instrumentation and Analysis of MPI Queue Times on the SeaStar High-
Performance Network,” in Computer Communications and Networks (ICCCN "08), Aug 2008, pp. 1-7.

[22] R. Keller, G. Bosilca, G. Fagg, M. Resch, and]. J. Dongarra, “Implementation and Usage of the PERUSE-Interface in
Open MPL,” in Proceedings, 13th European PVM/MPI Users’” Group Meeting, ser. Lecture Notes in Computer Science.
Bonn, Germany: Springer-Verlag, September 2006.

[23] “Sun HPC ClusterTools User’s Guide,” https://docs.oracle.com/cd/E19708-01/821-1319-10/index.html.

[24] R. Keller and R. Graham, “MPI Queue Characteristics of Large-Scale Applications,” in Cray User’s Group Meeitng (CUG
2010), 2010.

13

[25] M. Gerndt, K. Fiirlinger, and E. Kereku, “Periscope: Advanced Techniques for Performance Analysis,” in Parallel
Computing: Current & Future Issues of High-End Computing (Proceedings of ParCo), vol. 33, 2005, pp. 15-26.

