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Abstract—Collecting data in High-Performance Computing
(HPC) is a laborious task, demanding that application scientists
execute the application multiple times with different configura-
tions. Due to the essential nature of performance modeling and
root cause analysis as initial phases of performance enhancement,
the data collection phase prolongs the optimization process.
Motivated by this observation, we investigate the feasibility of
leveraging the recent advancement in the field of generative
Artificial Intelligence (AI) to synthesize performance samples.
However, generating synthetic performance data introduces an
additional hurdle: the absence of ground truths to assess the
quality of the synthetic data. This work takes a step toward
bridging this gap where we propose a framework—PERFGEN—
for generating performance data and evaluating its quality using
a novel metric called Dissimilarity. Our experiments with
three performance and five machine learning datasets (including
three classification and two regression datasets), confirm that
our proposed Dissimilarity correlates with model accuracy
better than three of the state-of-the-art metrics—SD quality,
Kullback-Leibler Divergence (KL), and TabSyndex, demonstrat-
ing that the Dissimilarity metric strongly correlates with the
quality of generated scientific data. We evaluate the quality by
measuring how well the generated data enables a downstream
Machine Learning (ML) task to generalize. Since performance
data is a special case of scientific data—typically stored in tabular
format and consisting of numerical, categorical, and ordinal
features—our methodologies and metrics apply to scientific data
from other domains as well.

Index Terms—Large Language Model, Generative Modeling,
Evaluation, Scientific Data

I. INTRODUCTION

Data collection in HPC is time-consuming; an application
scientist must run the application with various configurations
many times. Not only is the process time-consuming, it could
potentially lead to system failures or overloads on the shared
cluster causing an inconvenience to all the users. The collected
data is pivotal in root cause analysis, leading to better and
optimal processes. As performance modeling and root cause
analysis are necessary for performance optimization, the data
collection process can delay it.

Motivated by these observations, this work aims to an-
swer the following research question: Can we leverage deep
generative models to synthesize new performance samples
to reduce the data collection overhead? However, synthetic
performance data generation has an additional challenge: there
is no ground truth to compare and assess the quality of the
synthetic data [1]. A characteristic of an appropriate evaluation
metric is that it should corroborate with the quality of the

downstream analysis tasks, e.g., a synthesized dataset with
high score should achieve similar prediction accuracy as the
real dataset for the same test samples. To compute the quality
of synthesized data, most works on generative networks such
as [2] visualize it against the actual data, which is only possible
when the data is of low dimensionality. Furthermore, other
works have used different metrics to assess the quality of
synthesized data. For instance, Conditional Tabular Generative
Adversarial Networks (CTGAN) [3] uses the likelihood fitness
metric and machine learning efficacy; [4] and [5] use statistical
similarity as a measure in addition to machine learning effi-
cacy; [6] uses measures such as KL-divergence and log-cluster.
The disparity between the metrics used for the same goal calls
for a unified, effective metric that succinctly represents the
similarity between any two datasets.

To address this gap, we propose a new evaluation metric that
jointly considers the subspace and distribution similarity of
the real and synthesized samples, and our extensive evaluation
(Section V) demonstrates that our proposed metric correlates
well with the accuracy of a downstream analysis task. The
rationale is that synthesized samples can be used to augment
real measurements when they make the downstream analysis
task perform similar to how it would have if real measure-
ments were done instead of synthesis. Since the main use of
data augmentation is to improve machine learning models’
performance, whether it’s for prediction or generation, once
we achieve high-quality synthetic samples, these samples can
be reliably used to train new models for solving varied sets
of problems. This is why we base the quality of synthetic
samples as well as the efficiency of the metric on machine
learning efficiency (MLE).

Another unique challenge of generating performance data is
that it requires conditioning on a range of continuous values
(e.g., execution time), different from images and text. This
problem is also more challenging as there is no one label
to match against. Additionally, the features of performance
samples are often discrete and bounded. For instance, the
number of threads on an HPC system can be 4, 8, 12, 16,
32, etc. It is improbable that the number of threads will be
set to 27. Therefore, the generative models need to learn to
represent features from user-defined acceptable subsets.

To address the above-mentioned gaps and motivated by the
advancement in generative modeling, we propose a general-



izable framework—PERFGEN—of synthesis, evaluation, and
explanation for performance data. In this work, we implement
both a Large Language Model (LLM) and a Generative
Adversarial Networks (GAN) to synthesize performance data.
Further, we assess the quality of the generated data using our
proposed Dissimilarity score and compare it with several
evaluation metrics proposed in the literature. Our evaluations
demonstrate that our proposed metric correlates with the
efficacy of downstream analysis tasks (measured using MLE)
better than the state-of-the-art metrics.

To summarize, our contributions are to:

1) Build a generalizable API for leveraging deep generative
models including LLMs for synthesizing tabular data
conditioned on continuous feature with a mixture of data
types as described in III under use case II;

2) Propose a new evaluation metric for quantifying the
quality of the unconditionally generated synthesized data
for the purpose of augmentation as described in III under
use case I;

3) Compare the proposed evaluation metric with other
state-of-the-art ones by correlating their scores with the
performance of downstream ML tasks;

4) Validate the synthesized data’s quality using a
visualization-based method.

We demonstrate the generalizability of our work by synthe-
sizing data using eight HPC applications’ performance datasets
and five ML benchmark datasets. Extensive evaluations in Sec-
tion V demonstrate that the PERFGEN framework is capable
of synthesizing data with ranges as conditions, numerical and
categorical features, and equipped with a superior evaluation
metric—Dissimilarity score, that can indicate how ef-
fective the synthesized data is in a downstream analytics task.

II. BACKGROUND AND RELATED WORK

A. Generative Models
Generative modeling refers to deep learning models that

generate new, unseen samples with the same visual appearance
and statistical properties as the already existing data. These
models exist in various different architectures such as Varia-
tional Auto-encoders (VAEs) [7] or the Generative Adversarial
Networks (GAN) [8]. Many frameworks have been developed
based on these architectures for addressing various data types,
including images, audio, and text. StyleGAN [9] is an example
of a GAN based model used for image synthesis, whereas
[10] is an example of a model used for speech synthesis.
MedGAN [11] is another framework that leverages GANs
for medical image-to-image translation. There are frameworks
for generating tabular scientific data with mixed data types
that consist of categorical and numerical features. Generative
modeling has also been used to generate I/O traces [12];
however, this work is only specific to I/O logs generated by
a library called Darshan [12]. Using GAN architecture, the
CTGAN framework Conditional Tabular Generative Adversar-
ial Networks (CTGAN) conditionally synthesizes tabular data
with mixed data types. More recently, a lot of work has been
leveraging the knowledge of Large Language Models (LLMs)

to reason with and generate tabular data. LLMs have been
used for translation [13], for virtual assistance [14] among oth-
ers. Generate Realistic Tabular Data (GReaT) [15] is another
such framework which in-turn leverages the HuggingFace [16]
framework for fine-tuning pre-trained LLMs.
B. Evaluation metrics:

With data generation comes the need for evaluating the
quality of the data. In the case of images, one of the simple
ways to assess the quality of generated data is by visual
inspection. However, the same method does not apply to
assessing scientific data. Another way is to compare the
real and fake data distributions; however, comparing just the
distributions is not enough since it compares two specific
instances of the population. Here, we present several metrics
to assess the quality of the generated data:
Data Quality by SDMetrics (SDQuality) [17] is a percent-
age measure calculated on the basis of comparing marginal
distribution and correlation distributions in two datasets. Both
of these are measures of statistical similarities, however, the
former compares individual columns shapes or frequencies
whereas the latter compares the relationship between column
pairs. Furthermore, the marginal distribution or the column
shapes are computed as 1− Kolmogorov-Smirnov statistic [18]
(or KS Complement) for numerical columns and as 1− Total
Variation Distance[19] (or TV Complement) for categorical
or boolean columns. For calculating the correlation between
the column pairs, the metric uses Pearson [20] and Spearman
[21] rank coefficients for pair trends between two numerical
columns, otherwise computes a normalized contingency table
[22].
TabSynDex [23] is a measure with value between 0 and 1
and is calculated by taking a mean of the basic statistical mea-
sures (mean, standard deviation, and median), log-transformed
correlation coefficients [24], propensity Mean Squared Error
(pMSE) [25], a support coverage score based histogram com-
parison, and an average of ML efficacy measures. Equation 1
defined TabSynDex as:

TabSynDex =
BS + CORR+ pMSE + SC +MLE

5
(1)

where the five measures in the numerator are the five different
metrics mentioned above.
Mean KL [26] refers to the mean of KL diverges calculated
between the real and synthesized datasets. Since KL is not a
symmetric measure, i.e., the value calculated from dataset A to
dataset B is not equal to the value calculated from dataset B to
dataset A, we take the mean KL, which is the mean of KL from
real dataset to synthesized dataset and KL from synthesized
dataset to real one. If KLreal→syn represents the kl-divergence
calculated from the real dataset to the synthesized dataset and
KLsyn→real represents the kl-divergence calculated from the
synthetic dataset to the real dataset, the mean KL can be given
by:

meanKL =
KLreal→syn +KLsyn→real

2
(2)
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Fig. 1: Overview of the PERFGEN framework.

In contrast, our work differs from the previous work as
we measure similarity between both the high-dimensional
subspaces in addition to distributions that help compare the
salient structures present within the data to approximate the
dissimilarity between the datasets better.

III. DESIGN AND IMPLEMENTATION

Figure 1 shows the overall workflow of the PERFGEN frame-
work. We train a GAN based architecture using CTGAN and
fine-tune an LLM which is a transformer based architecture
using GReaT.
A. Pre-processing

We list the steps for pre-processing the data below, and
describe how they are implemented in PERFGEN.
Prompt Generation: LLMs are pre-trained on massive
amounts of data, usually in text. To leverage these LLMs for
tabular data, we must transform the tabular data in a way
that can be used to fine-tune the LLM. For this purpose,
PERFGEN pre-processes each sample into a sentence wherein
feature values are represented in the form feature_name
“is” feature_value, each feature separated by a comma.
Imputation: For most machine learning models, a standard
step before feeding the model with data is to ensure no missing
values exist. If the number of samples with missing values is
insignificant, we remove the samples. Otherwise, we use the
Simpler Imputer function provided by Sklearn [27]. The
Simpler Imputer function finds the missing values and
replaces all missing values in the column based on a selected
strategy. We used the feature column’s mean to replace any
missing values.
B. Modeling

Generative models are Neural networks capable of syn-
thesizing data samples akin to the existing ones. There are

various types of generative models in the literature such as
CTGAN, and Variational Autoencoders (VAE) [28]. In this
work, we chose to work with a GAN based architecture and a
transformer-based LLM for both the unconditional generation
of synthetic data and generating synthetic samples condition-
ally. Figure 2 shows how we can generate data conditionally
or unconditionally using PERFGEN.
C. Implementation

Generating using GAN: To generate data using GAN,
PERFGEN uses the CTGAN which consists of two fully
connected layers for both the generator and the discriminator
where both minimize two different loss functions given by:

LD =
1

m

m∑
i=1

[D(x′(i))−D(x(i))] (3)

LG =
1

m

m∑
i=1

[D(x′(i))] +H (4)

Here, LD represents the loss function for the discriminator,
and LG represents the loss function for the generator. x(i) rep-
resents the ith sample of the real data and x′(i) represents the
ith sample of the synthesized data. D(x) is the discriminator’s
output on the real data, D(x) is the discriminator’s output on
the synthesized data and H is the cross entropy loss. When the
discriminator’s output on the synthesized data D(x) matches
that of the real data D(x), the discriminator loss LD becomes
zero. H is the cross entropy loss that penalizes the generator
when a large error occurs so that the next time synthesized
data can be closer to the real data.

Generating using LLMs: The GReaT framework uses
pre-trained LLMs, which are based on transformers. The
framework consists of three modules: (a) textual encoder that
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encodes the tabular data into text or sentences for the LLM to
consume and also additionally permutes or shuffles the feature
sequence, (b) the fine-tuning module wherein the selected pre-
trained LLM is fine-tuned using the encoded data, and (c)
sampling module wherein we sample synthetic data from the
fine-tuned model.
D. Conditioning:

CTGAN doesn’t support conditioning on numerical fea-
tures. However, our framework provides an API for spec-
ifying the conditions on numerical features for CTGAN.
These conditions include a range for the target variable, e.g.,
“generate configurations to finish running an application in
less than 10 seconds”, or “generate configurations with the
number of threads in the list of [4, 8, 16, 32, 64] to finish
running an application between 5 and 10 seconds”. The GReaT
framework, on the other hand, supports arbitrary conditioning
as a result of introducing permutations while encoding the
tabular data.
E. Evaluation:

One of the core contributions of this work is a new metric
for comparing the quality of the synthesized data quantita-
tively, and it is defined as:

Dissimilarity = exp
∑
i

θiλi (5)

Here, d∗ is the optimal dimension of the Principal Com-
ponent Analysis (PCA) [29] of the datasets. θi calculates
the angle between the two low-dimensional subspaces of
the original and synthesized data, representing the geodesic
distance of the Grassmanian manifold, denoting how aligned
the two subspaces are. The higher the value, the less aligned
they are. To strengthen the quality of this metric, we also
compare the distributions of the original and synthesized
data samples by computing the KL divergence between the
two datasets. The rationale for considering the subspaces in
addition to distributions is that a low-dimensional projection
often emphasizes the salient structure in data while rejecting
noise and outlier data. In contrast, a distribution comparison
only focuses on the sample at hand.
F. Explanation:

We leverage the Uniform Manifold Approximation and
Projection (UMAP) [30] method for projecting the high-
dimensional features into low dimensions and visualize them
to identify information clusters or patterns.
G. Use Cases

In this work, we demonstrate the applicability of the PERF-
GEN framework in generating tabular data using six datasets
for two use cases: (1) unconditional generation of features and
targets for data augmentation and (2) conditional generation
of features given targets for prediction and decision-making.
Although our goal is to generate performance data, by using
ML datasets, we can demonstrate that the data generation and
evaluation capability of the PERFGEN framework applies to
any scientific data.

Use Case I: Unconditional generation of features and
targets for data augmentation

We unconditionally generate all the features of a dataset
from a generative model trained on the whole of the real
dataset available to augment the dataset. Such a use case
is important for HPC as a high-fidelity generation process
can reduce the need for extensive performance measurement
experiments, reducing the overhead from days and weeks to
seconds. Although we use four ML datasets, namely “HE-
LOC”, “Magic Telescope”, “Parkinsons”, and “Handwritten
Digits”, from the datasets described in the section IV for
this use case, the same methodology can be applied to HPC
datasets as well.

We train/fine-tune the models on all the samples and use
the generated samples to (1) assess the quality of the trained
model by comparing the Machine Learning Efficiency (MLE)
achieved by the synthesized samples to the MLE achieved by
the real samples on the same test dataset, (2) validate that
Dissimilarity does corroborate with the MLE efficien-
cies achieved by the synthesized samples better than the SOTA
metrics described in section II. The MLE evaluation metric is
described in Section IV-D.
Use Case II: Conditional generation of features given
targets for prediction and decision-making

We apply PERFGEN to synthesize the features given a
specific value or range for the target column. This the problem
can be mapped to that of decision-making, where a user,
for instance, would like to know which configurations to use
(e.g., number of threads, power cap, thread binding algorithm)
that will enable the application to finish under a certain time
limit. This use case is a practical one for HPC as it guides
scientists and facilities in achieving good performance without
evaluating hundreds or thousands of configuration options,
thus saving developer time.

To implement decision-making, we train/fine-tune the mod-
els on 90% of the “California Housing”, and “Perfvar”
datasets. We then use the rest of the samples to conditionally
generate different columns based on the kind of decision to
be made. For instance, we use the features “longitude” and
“latitude” along with “house value” to predict the average
number of rooms, answering the question: given a certain
area and the budget, what is the number of rooms or
square footage of the house one can expect to purchase?

For prediction use-case, we train/fine-tune the models with
90% of the “California Housing”, “Kripke”, “Hypre”, and
“Perfvar” data samples. We then give the models all the
features from the test set and calculate the Mean Square Error
(MSE) for the target column based on the prediction made by
the model and the ground truth. For this use case, a user needs
to provide PERFGEN with a data file containing the desired
values for the conditional columns and “nan” for all the other
feature values.

4



Fig. 2: Ways of generating data from a model - (a) Conditional
Generation: where the user gives certain values for selected
features to a trained model, and the model imputes the rest of
the column values. (b) Unconditional Generation: where the
user doesn’t put any condition on any of the features so the
trained model generates values based on the values it has seen
during training

IV. EXPERIMENTAL SETUP

A. Baselines
In this section, we describe the baselines and evaluation

metrics for judging the quality of the synthetic samples.
ML Baselines:
1) Random Forest

[31] is a popular machine learning algorithm known for
its robustness and effectiveness in various tasks. It operates
by constructing multiple decision trees during training and
outputs the mode or mean prediction of the individual trees
for classification or regression, respectively.
2) Decision Tree

[32] is a versatile and interpretable machine learning model
used for both classification and regression tasks. It works by
recursively partitioning the feature space into regions based
on feature values, aiming to minimize impurity or maximize
information gain at each split. Each leaf node represents a
decision or prediction, making it easy to interpret and explain.
3) Linear Regression

[33] is another fundamental statistical method used for mod-
eling the relationship between a dependent variable and one or
more independent variables. The goal of linear regression is to
find the best-fitting line (or hyperplane in higher dimensions)
that minimizes the sum of squared residuals between the
observed and predicted values. Linear regression is widely
used for predictive modeling for regression tasks.
4) Logistic Regression

[34] models the probability of the occurrence of the event of
interest by fitting a logistic curve to the data. Despite its name,
logistic regression is a classification algorithm. It estimates the
probability that a given input belongs to a particular class.

We implemented the above mentioned baselines using

Sklearn library in python. Also, Section II describes the state-
of-the-art evaluation metrics we compare with our proposed
Dissimilarity score.
B. Datasets

Table I provides a summary of the datasets used. Additional
information about all the datasets is given below.
1) Perfvar

[35] is an HPC dataset collected from six different ap-
plications by running them on a supercomputer at a national
laboratory. Since all the applications had the same performance
counters, it seemed ideal to combine them all in one dataset
such that a single model could be trained and used for
synthesis of samples for all the six applications. The features in
this dataset include application and algorithm, which constitute
the names of the algorithm and application in use for a
particular sample. Bandwidth level, task count, power cap, and
thread count are the other features that represent the system
configuration. The application, algorithm, and bandwidth level
features are categorical, whereas the task count, threads, power
cap, and runtime features are numerical. The ML task in this
dataset is to predict the runtime of an application, which is a
continuous value. It is a regression dataset with 3, 990 samples.
2) Kripke

[36] is another HPC datasets that was collected in Argonne
National Laboratory. It consists of performance counters for
the application named kripke such as the number of nodes
used, the nesting method, number of threads used, package
power and core power. The target for this dataset is the
execution time, which is continuous, making this a regression
dataset. The total number of samples is 6930 and the number
of features is nine.
3) Hypre

[37] was collected in Argonne National Laboratory. This
dataset is similar to the ones mentioned above in the way
that this also refers to performance counters collected by
running an application on supercomputers. However, the main
difference between Kripke and Hypre is that the performance
counters apart from the runtime collected for the two are
different. As Table I shows, this is a biggest dataset we have,
with close to 25k samples. The total number of features are
ten.
4) California Housing

[38] is an ML benchmark dataset based on census data
from 1990 pertaining to California. The features in this dataset
include the longitude and latitude that represent a specific
area, house age, number of rooms in the house, total number
of bedrooms, median income of the household, and number
of people in the household. The median house value serves
as the target for this dataset which is a continuous value.
Table I shows that the total number of samples in this dataset
is 20, 640.
5) Parkinsons

[39] is an ML benchmark dataset consisting of voice
measurements of people in their early stages of Parkinson’s
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TABLE I
SUMMARY OF THE DATASETS

Dataset # samples # features Target Type
PerfVar 3,991 7 Continuous
Hypre 24,965 10 Continuous
Kripke 6,930 9 Continuous
California Housing 20,640 8 Continuous
Parkinsons 5,875 19 Continuous
Magic Telescope 19,020 10 Categorical
Handwritten Digits 3,832 64 Categorical
HELOC 10,459 23 Categorical

disease recorded in their respective homes. There are nineteen
features in this dataset wherein the five features with the prefix
“Jitter” refer to measurements related to frequency, the six
with the prefix “Shimmer” refer to measurements related to
amplitude, and two other features correspond to the ratio of
noise to tonal components in the voice recorded in the sample.
The rest of the features pertain to the patient’s age, gender,
time in number of days since the signing up. The target for
this dataset is the clinician’s score based on the rest of the
features. This is a regression dataset. Table I shows that the
dataset has a total of 5875 samples in this dataset.
6) Magic Telescope

[40] is an ML benchmark dataset consisting of ten features,
and one class label. The purpose of this dataset is to help
simulate the registration of gamma particles in the Cherenkov
gamma telescope through imaging, thereby statistically differ-
entiating between the showers caused by gamma rays (class g)
from the ones caused by cosmic rays in the upper atmosphere
(class h). The class column referring to whether a sample
belongs to class ‘h’ or class ‘g’ serves as the target. Table I
shows that the total number of samples in this dataset is
19, 020.
7) Handwritten Digits

[41] dataset is a the tabular representation of 8x8 images
of handwritten digits. As a result, there are 64 features, all
corresponding to the different pixel values of an image. All
features have values between zero and sixteen, whereas the
class column (target) has values between zero and nine. This
dataset is divided into train and test sets and the train set
consists of 3832 samples, the number of samples we have
trained our models on.
8) HELOC

[42] or Home Equity Line Of Credit is an ML benchmark
dataset consisting of a total of 10, 459 samples and 23 features.
The features in this dataset consist of details about applicants,
and the class tells whether those applicants will be able to
repay their loan within two years.
C. Hyperparameter Tuning

We leverage wandb [43] for hyperparameter tuning and
experiment tracking for CTGAN and we tune the following
hyperparameters to find models with varying performances:
batch size: the number of samples fed into the model
simultaneously. The batch sizes used are between 100− 500.

epochs: the number of times the model loops through the
dataset. The number of epochs was varied between 600−1500.
discriminator steps: the number of times the dis-
criminator should be trained before returning to generator
training. This number is varied between 1 and 3.
For the LLMs, we varied the number of epochs while batch
size, and learning rate were kept the same.
D. Compare Quality of the Evaluation Metrics

We use the same samples generated for the previous use
case and the results achieved in the ML baselines. Then,
we compare these with the evaluation metric baselines and
Dissimilarity. We want to see which of these measures
consistently corroborate with the ML results and so can then
be used as a standard for gauging the quality of synthetic data.

The results achieved from the machine learning models
are referred to as MLE. It is a measure of how accurately
a machine learning model can predict or classify compared to
the ground truth or human-labeled data. The metrics used by
the models depend upon the task at hand. For a classification
problem, accuracy is used whereas for regression problems,
MSE is calculated.

V. RESULTS

This section presents the detailed results of generating
data for the eight datasets from two use cases discussed in
Section III. Specifically, we address the following research
questions:

• RQ1: Which generative AI architecture works well for
synthesizing performance datasets?

• RQ2: Does our proposed Dissimilarity score cor-
relate with the outcome of the downstream tasks?

• RQ3: How does our proposed Dissimilarity metric
compare against the state-of-the-art (SOTA) evaluation
metrics?

• RQ4: Provide insight into why our proposed
Dissimilarity score correlates well with the
data quality.

A. RQ1: Comparison between GAN and LLMs for synthe-
sizing performance datasets

The object of this experiment is to evaluate the capability of
the two different architectures in generating data conditionally
in two ways: (1) When all the features are given and the model
needs to predict the target, and (2) When only a few features
are given and the model imputes all the other values.
Prediction: To test the prediction capability of a generative
model as mentioned in use case II, we reserve 10% of the real
samples while use the rest of the 90% samples for training.
During testing, we provide the model with all features but no
value for the target column. The model predicts the target val-
ues and we calculate the mean MSE from the predicted values
and the ground truth. While LLMs are able to predict the target
columns conditioned upon any feature, the GAN architecture
is unable to handle conditions on numeric columns. Table III
gives the details of the LLM training for each dataset along
with the best MSE achieved from the baseline models.
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TABLE II
THE SCORE FOR DIFFERENT METRICS ALONG WITH THE MACHINE LEARNING EFFICIENCY () ACHIEVED FROM ONE OF MACHINE LEARNING BASELINES
- LOGISTIC REGRESSION(LOR)/LINEAR REGRESSION(LIR) OR DECISION TREE(DT) OR RANDOM FOREST(RF), WHICHEVER PERFORMED BEST. THE

DATASET WITH AN ASTERISK(*) IS REGRESSION DATASET SO THE MLE FOR THAT REPRESENTS MEAN SQUARED ERROR (MSE) WHILE FOR THE OTHER
DATASETS IT REPRESENTS ACCURACY. THE ARROWS NEXT TO THE METRIC NAMES INDICATE WHETHER THE METRIC IS SUPPOSED TO INCREASE OR

DECREASE WITH THE INCREASE IN MLE.

Dataset Machine Learning Efficiency Dissimilarity (↓) SDQuality (↑) Tabsyndex (↑) Mean KL Divergence (↓)Original Synthesized Model
Handwritten Digits 97 21 LoR 85.63 99.99 - 0.03
HELOC 69.69 69.6 LoR 2.3 100 0.46 0.02
Magic Telescope 79.36 77.21 LoR 1.3 100 0.41 0.01
Parkinson’s* 0.09 10.2 RF 464.05 99.96 - 1.19

TABLE III
MSE FOR LLM PREDICTION: THIS TABLE DETAILS THE NUMBER OF

SAMPLES AND EPOCHS USED FOR FINE-TUNING THE LLM; THE MSE
USING LLM, AND THE BEST BASELINE MODEL FOR EACH OF THE FOUR

DATASETS.

Dataset # train # epochs MSE BL-MSE
PerfVar 3,592 600 22.02 4.76
Hypre 22,469 300 9.454 1.23
Kripke 6,237 300 1298.55 110
California Housing 18,577 300 0.51 0.25

Decision-making: For decision-making in use case II, we use
the “California” dataset to enquire about what the house age
and average bedrooms would be for a given longitude, latitude,
and income. On average, the LLM recommends house age that
is off by 9 years and average number of bedrooms off by 0.078.
For the “Perfvar” dataset, we ask the generative models to
recommend the number of threads to use given the application
name, thread binding algorithm, and a runtime constraint. For
this dataset, the LLM recommends the correct thread count
80% of the time. On the other hand, the GAN based generative
model recommends a thread count off by 4 during all trials.
B. RQ2: Correlation between the Dissimilarity score

and the outcome of the downstream tasks:
This experiment aims to study the correlation between our

proposed Dissimilarity score with the outcome of the
downstream tasks. We use the Parkinsons, Magic Telescope,
Handwritten Digits, and HELOC datasets (Table I) for this
experiment. We train/fine-tune models on each dataset sep-
arately and then sample data unconditionally, in context of
the use case I, from these respective models. The quality of
the synthesized data is then compared by training several ML
baselines presented in Section III on the real and synthesized
datasets separately and testing both the models on the same
test set taken from the real dataset. Since the test samples from
the actual dataset contain ground truth labels, we can quantify
how well a model using synthesized data can approximate the
samples from the real distribution. The model producing data
that scores accuracy or mean squared error (MSE) closest to
the results achieved by the real data would be considered the
best model.

In Figure 3, we see the metrics with the MLE achieved on
both the real and synthesized samples. We see two datasets,
namely HELOC and Magic Telescope, wherein synthesized
samples achieve MLE very close to the MLE achieved by the

Fig. 3: The figure shows the MLE achieved on the classi-
fication datasets for both the real and synthesized samples.
The number above each bar represents the Dissimilarity
score for that dataset. We see a clear correlation between
accuracy of the downstream machine learning tasks and
Dissimilarity.

respective real samples. We see for both of these datasets,
Dissimilarity score is very close to zero. However, for
Handwritten Digits, we see the accuracy drops from 97% on
the real samples to barely 21% on synthesized samples. Here,
we see a considerable rise in the Dissimilarity score,
reaching 85.63. Similarly, for another dataset for which the
synthesized samples perform poorly with respect to MLE is
the Parkinsons dataset (See Table II). We see the rise in Mean
Squared Error (MSE) from 0.09 to 10.2, which is almost 100x.
Dissimilarity score reflects the same with a very high
number of 464.

Therefore, we conclude the positive correlation holds be-
tween the Dissimilarity score and accuracy of the
downstream machine learning tasks across all datasets, and
all downstream machine learning tasks prove the viability
of Dissimilarity as an effective evaluation metric for
scientific data generation.
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Fig. 4: The figure shows the MLE achieved on the clas-
sification datasets for both the real and synthesized sam-
ples along with the three metric scores (Dissimilarity,
SDQuality, and KL-Divergence). We see no visible difference
in SDQuality score and the KL-Divergence for the datasets
even though the MLE difference for Digits dataset is evident.
Dissimilarity score, however, increases with decrease in
accuracy, which is the anticipated behavior.

C. RQ3: Compare Dissimilarity against the SOTA
evaluation metrics:

This experiment aims to compare the sensitivity of
Dissimilarity score to the quality of the unconditionally
synthesized samples (use case I). Specifically, as the base-
line, we select three commonly used evaluation metrics for
scientific data—KL-Divergence, SDQuality, and TabSynDex
(described in Section II). Note that Table II shows accuracy
for the three datasets, namely Handwritten Digits, Magic
Telescope, and HELOC, with classification labels and MSE for
the Parkinson’s dataset with continuous target. As explained
in the previous section, Dissimilarity corroborates well
with the results achieved from the MLE tasks.

Table II shows that the mean kl-divergence between the
real and synthesized samples is only 0.03 for the Handwritten
Digits dataset when the downstream accuracy achieved on the
synthesized samples is way lower than the accuracy achieved
on the real samples. On the other hand, SDQuality gives a
score of 99% or above even though the datasets perform poorly
based on the MLE.

Similarly, Table II shows that the Tabsyndex score is low at
almost 0.4 although both the datasets achieve a close MLE to
the the real dataset. Further investigation shows that the MLE
score within the TabSyndex metric is low (0.11), which do not
match with our calculation of MLE. Due to this discrepancy,
we do not use the TabSyndex metric for the rest of the datasets.

In Figure 4, we observe that the SD quality and Kl-
Divergence metrics do not correlate with accuracy; that is, the
value of SDQuality is high even for Handwritten Digits, which
shows poor performance for the downstream models, whereas

KL-Divergence shows small divergence when it should be
considerably large. In contrast, the Dissimilarity score
gives a variation that correlates with the downstream analysis
task’s performance showing that it is sensitive to the quality of
the data and the Dissimilarity value reflects the expected
accuracy.
D. RQ4: Validate the quality of synthesized samples using

the Dissimilarity score
In this experiment, we visualize the relationships between

real and the unconditionally synthesized samples, in context
of use case I, as a function of the Dissimilarity score.
Specifically, using the Handwritten Digits dataset, we visualize
the 2-D representations of the real dataset, a set synthesized
from a model that does poorly in terms of MLE, and a
set from a model that does well in terms of to investigate
the local structures of the datasets. We also observe similar
patterns in other datasets; however, we omit including them
due to the page limit. To plot the 2-D representations, we
leverage the Uniform Manifold Approximation and Projection
(UMAP) [30] dimension reduction method. UMAP is known
for it’s capability of capturing complex non-linear relation-
ships and preservation of local structure present within the
data. We use this capability to our advantage and look at
the local structures present within the datasets and then see
the correlation between the similarities in structure and the
Dissimilarity score.

In Figure 5, we observe similar clusters across all three
datasets for the nine classes. However, in Figure 5a, we
observe the clusters to be homogeneous which corroborates
with the dataset achieving a high accuracy of 97%. On the
other hand, 5b shows clusters of various colored dots mixed
in. This set of samples achieved an 85 Dissimilarity
score, which we clearly see correlated with higher dissimilarity
with 5a. Additionally, these samples achieved an accuracy of
21%. In 5c, although we observe some noises, each cluster
predominantly contains dots of the same color. Here, the
Dissimilarity score is 4 and the MLE is 91%.

It’s worth noting that the SDQuality scores for both the
synthetic sets (5b and 5c) are 99.99%, which do not correlate
with the appearance of the local clusters. This visualization
validates our hypothesis that leveraging subspace distance
and distribution similarity together creates a stronger distance
measure that can indicate whether the synthesized data will
enable a downstream analysis technique to perform as well as
the real data.
E. Discussions

The SDQuality is not able to corroborate effectively with
the MLE metric. This is because it primarily focuses on the
variability of data within a dataset but may not capture other
aspects of data quality, such as accuracy, completeness, rele-
vance, or consistency. As a result, relying solely on SDQuality
may overlook important data quality dimensions crucial for
many applications. Additionally, SDQuality is sensitive to
outliers or extreme values in the dataset, which can dispro-
portionately influence its calculation and provide misleading
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Fig. 5: This figure shows the local structures captured by
UMAP for (a) Real Data where we see almost homoge-
neous clusters each color representing a digit from 0-9, (b)
Synthesized Data with Dissimilarity score of 85, (c)
Synthesized Data with Dissimilarity score of 4. We
see the data with lower Dissimilarity has cleaner and
more homogeneous clusters whereas the one with higher
Dissimilarity has pretty random clusters showing that
Dissimilarity reflects the similarities within the structure
of the datasets.

assessments of overall data quality. Similarly, KL-Divergence
only looks at the relationship between individual samples, and
so if a synthesized dataset has similar statistical properties, it
will result in a low divergence, however, holistic similarity in
the dataset might not exist.

This is where considering the low-dimensional representa-
tion that reduces noise and looking at the sub-spaces gives
a much better understanding of the differences between the
datasets. Such a measure is very valuable as a large percentage
of all the data available to us is in tabular format, and
people are generating synthesized tabular data samples for
various applications in HPC, finance, medicine, and education,
among others. Our thorough evaluations demonstrate that
leveraging LLMs for decision making for HPC datasets is
a promising route.

VI. CONCLUSION

This work addresses the two challenges of (1) performance
data generation, (2) quality of synthetic data evaluation in
a quantitative manner. Our experiments with three HPC and
five ML dataset demonstrate that Dissimilarity measure
correlates with model accuracy better than the state-of-the-
art metrics, implying that Dissimilarity is a better eval-
uation metric for quantifying the quality of generated data.
For performance data generation from the perspective of both
prediction and decision making, an LLM based model seems
to be a better choice.
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