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Abstract—The use of machine learning techniques to model

execution time and power consumption, and, more generally, to

characterize performance data is gaining traction in the HPC

community. Although this signifies huge potential for automating

complex inference tasks, a typical analytics pipeline requires

selecting and extensively tuning multiple components ranging

from feature learning to statistical inferencing to visualization.

Further, the algorithmic solutions often do not generalize between

problems, thereby making it cumbersome to design and validate

machine learning techniques in practice. In order to address these

challenges, we propose a unified machine learning framework,

PADDLE, which is specifically designed for problems encoun-

tered during analysis of HPC data. The proposed framework

uses an information-theoretic approach for hierarchical feature

learning and can produce highly robust and interpretable models.

We present user-centric workflows for using PADDLE and demon-

strate its effectiveness in different scenarios: (a) identifying causes

of network congestion; (b) determining the best performing

linear solver for sparse matrices; and (c) comparing performance

characteristics of parent and proxy application pairs.

Keywords-machine learning, performance data, feature learn-

ing, interpretability

I. MOTIVATION

There has been an unprecedented growth in the scale of
supercomputers built over the last decade. The first Petaflop/s
machine, Roadrunner, appeared on the top500 list in June
2008 with more than 100,000 cores. The fastest machine
on the June 2017 list is Sunway TaihuLight with 100 times
the computational power and cores as Roadrunner. There
has been an explosion in the amount of performance data
that can be gathered, often exacerbated by the increasing
number of components identified as potential sources that can
impact performance. Common data sources range from on-node
hardware counters to CPU and DRAM power meters, and from
hardware counters on network switches to temperature and
humidity sensors in the machine room. Hence, performance
analysis of high performance computing (HPC) codes at this
scale requires analyzing enormous amounts of data, generated
at the rate of tens to hundreds of terabytes a day.

The large volume and diversity of data being gathered makes
it tedious in many cases, and impossible in others, for a
human to analyze and gain insights. As a result, automated
performance analysis methodologies are being actively pursued
in HPC [?]. In particular, it is becoming increasingly common
to adopt tools from machine learning (ML) for exploratory

analysis and pattern discovery. In several recent efforts, this
has enabled researchers to build predictive models, to infer
complex correlation structures, to identify regions of interest for
performance optimization, and to detect anomalous patterns [?],
[?], [?], [?], [?].

The existing practice for applying ML to HPC problems
involves designing an analysis pipeline using standardized
frameworks such as scikit-learn [?], Caffe [?], and
Tensorflow [?]. Although previous successes with ML
signify huge potential for automation, a typical pipeline requires
analysts to select and extensively tune multiple components
ranging from feature learning to model selection to visual-
ization. Further, the algorithmic solutions rarely generalize
between problems, thereby making it cumbersome to design
and validate the pipeline for every scenario.

The enormous size of the design space of algorithms,
and varying analysis needs and constraints often necessitate
interaction with ML experts to design targeted solutions. While
this bottom-up approach has been effective for individual
cases, it has high overheads in terms of person time, and
can result in repeated rediscovery of steps that are common
to several analyses. Moreover, HPC and ML researchers
run into stumbling blocks as they develop familiarity of
each other’s domains, including generalizability of models,
connection between data size and model uncertainties, validity
of assumptions about the data made by ML techniques, etc.
Finally, the black-box nature of complex ML algorithms, e.g.
deep neural networks, makes it challenging for the analyst to
interact and obtain insights into the functioning of the model.

In order to address these challenges of cross-domain in-
teractions, lack of solution reusability, and the abundance
of design choices, we propose a unified machine learning
framework, PADDLE (Performance Analysis using a Data-
driven Learning Environment), which bridges the gaps in the
existing modus operandi, to better facilitate the use of ML
in performance analysis. PADDLE provides an end-to-end
inferencing pipeline for predictive analysis tasks encountered in
HPC, while being robust to data uncertainties and interpretable
for subsequent analysis. PADDLE uses deep information
decomposition to extract important features from raw data
and supports automated and model selection, even when there
are multiple data sources. The HPC analyst does not have to
explicitly tune any of the components in the pipeline.



The modular structure of PADDLE allows easy adaptation
to any analysis task by extending its modules to use desired
algorithms from existing ML libraries. The Visualization

module in PADDLE enables the analyst to understand the
characteristics of the inferred model, directly in terms of the
input variables in raw data, and to identify inherent correlation
structure. The proposed framework can answer questions that
commonly arise in HPC performance analysis, such as: (i)
which ML algorithm is suitable to my data? (ii) how to visualize
and understand the black-box model? (iii) how to make models
robust to data uncertainties? and (iv) how to reuse a ML solution
for a different problem?

We demonstrate the utility of PADDLE by applying it to
HPC datasets from three research studies that were published
as one-off uses of ML and data analytics [?], [?], [?]. The first
study aims to identify factors that impact network congestion
and performance on HPC supercomputers. The second one
identifies the best preconditioner-linear solver combination
based on the properties of the input matrix. The third study
studies the relationships between parent and proxy application
pairs in terms of their performance behavior. For all these
studies, we show that PADDLE automatically infers optimal
models, and achieves state-of-the-art performance in prediction
tasks, outperforming task-specific ML solutions. Interestingly,
with its robust model design strategies, PADDLE produces
much simpler models compared to existing practice, thereby
making them interpretable for additional analysis.

In summary, the main contributions of this work are:
• A unified machine learning framework to tackle analytics

problems related to HPC performance data.
• A parameter-tuning free, deep feature learning approach

that automatically identifies correlations in data.
• Strategies to perform robust model design, even with limited

training data.
• Visualization of the learned feature space for understanding

black-box models.

II. HPC PERFORMANCE ANALYSIS AND DATA

The performance of parallel applications on large supercom-
puters is often dependent on several factors: the input problem
being solved, the algorithm being used and its parameter
choices, hardware/system dependent parameters etc. A common
goal of performance analysis of an application is to study the
dependence of performance, defined as execution time for
example, on these parameters. This is useful in many different
scenarios, such as identifying scaling bottlenecks at higher
core counts, identifying input parameters that result in the best
performance, comparing characteristics of different applications,
and tuning and redesigning applications for future systems.

With the increasing complexity of applications and machines,
the number of parameters on which application performance
depends has also increased. Multi-physics and multi-module
applications are parameterized on tens of input parameters for
the application itself. Use of resources such as accelerators,
network, and filesystem adds many other parameters that can
be tuned in some cases. Even for scenarios when certain

parameters cannot be selected for certain resources, their impact
needs to be modeled.

Below, we describe three different performance analysis
studies and the corresponding data that will be used in
Section ?? to evaluate the proposed framework.

A. Performance of Different Task Mappings

Performance of communication-heavy applications is often
limited by contention for resources on the network. A complex
interplay between factors such as message injection, routing
strategies, and sharing of network resources makes it tricky to
study their respective impacts on performance. In the first per-
formance analysis study, we address this challenging problem
by modeling the impact of network hardware components on
execution time of applications.

Data description: In order to study network behavior and
its impact on performance, we run the same application with
different task mappings on Blue Gene/Q. This changes the
layout of MPI processes on the 5D torus network and as a result
the flow of traffic on the network. We run three benchmarks
with common communication patterns (2D and 3D Halo, and
all-to-all over sub-communicators) with two message sizes (16
KB and 4 MB) on two node counts (1024 and 4096). Different
task-to-node mappings are generated using Rubik [?] for each
pattern, which are then executed individually to collect network
counters data and observed performance for each task mapping.

The network counters data includes parameters that are
expected to have an impact on performance, such as, number of
bytes transferred on each link, occupancy of router buffers, and
delays observed by packets when queued in the router buffers.
Other features such as number of hops traversed by each
packet and length of injection FIFOs are computed analytically.
Significant properties, such as average and maximum, are then
computed for each of these parameters to create the input data
set for this case study. We refer the reader to [?] for more
details on how networking experts created the data set.

B. Performance of Different Linear Solvers

Many computational science and engineering (CSE) codes
have compute kernels that solve sparse linear systems of
equations repeatedly. Several numerical software packages
exist that provide a suite of preconditioners and linear solvers
(PC-LS). Typically, the domain expert is expected to choose
the right PC-LS combination that performs best for the input
problem/matrix at hand. Intuitively, there is a strong correlation
between the properties of a matrix and the performance of a
specific PC-LS combination. However, this relationship is not
always obvious to a casual user, especially for matrices not
seen before. Hence, we model the performance of different
PC-LS choices with respect to properties of the input matrix.

Data description: We gather a training set of sparse matrices
and compute features that we expect to impact performance [?].
This includes features that describe the structure of the matrix,
its numerical properties, and the domain-specific information
on how the matrix is generated, if available. We obtain the



execution times to solve the linear equation represented by each
matrix for various PC-LS combinations (13 preconditioners
and 9 solvers in Trilinos [?]) on an Intel Xeon node.

For our performance study, we use matrices generated
by MFEM [?], a finite element discretization library, when
different discretization orders and refinement levels are used
for four arbitrarily chosen problems. This generates a set of
879 symmetric positive-definite matrices that exhibit the typical
challenges with matrices in PDE-based CSE applications. In
our experiments, we consider randomly chosen 75% of matrices
for training and the rest for validating our prediction model.

C. Performance of Proxy and Parent Applications

Hardware-software co-design often involves the use of
proxy applications – simpler codes that capture the essence
of specific performance-critical modules in a production
application. Consequently, it is critical to understand which
salient performance characteristics of a parent application are
covered by a proxy and how well. One method for this analysis
is to collect hardware performance counters for the parent and
proxy application, and to compare the counters data and its
impact on performance.

Data description: In this performance study, we use
OpenMC [?], a production Monte Carlo (MC) particle transport
simulation code and one of its proxy applications called
XSBench. We compare the strong scaling behavior of XSBench
and OpenMC on an Intel Xeon node using six different
workloads. For each code, we collect hundreds of hardware
performance counters available via PAPI that are grouped into
different resource groups such as floating point unit, Branch
unit, L1 cache, L2 cache, memory and others. These resources
represent different architectural components that can impact
application performance.

III. A UNIFIED ANALYSIS FRAMEWORK FOR HPC DATA

Automating performance analysis in HPC requires the
design of targeted machine learning solutions that allow the
incorporation of task-specific constraints and produce high-
fidelity results as evaluated by user-defined quality metrics. A
typical workflow for such analysis consists of the following
steps: (i) identify data sources, and collect necessary and
sufficient data, (ii) formulate the data and analysis into a
machine learning task, (iii) find a suitable technique from
the plethora of available machine learning solutions, (iv) fine-
tune and select the model parameters, (v) build a qualitative
understanding of the chosen black-box model (e.g. feature
importances, correlations), and (vi) transform results from the
analysis into domain knowledge.

The open-ended nature of the steps above makes it extremely
challenging for a performance analyst to arrive at a satisfactory
solution in a single iteration. Further, it is often not possible
to transfer the insights and experience from one problem to
another without making grossly inaccurate approximations to
the analysis. This makes the process of data analysis difficult
and time-consuming. In addition, inherent assumptions made
by commonly adopted machine learning techniques are often

neglected, thereby making it challenging to reduce uncertainties
in the inferred model. Finally, several successful machine
learning paradigms, such as deep neural networks, are not
interpretable, thereby making the models highly opaque for the
analyst. These obvious shortcomings in the HPC performance
data analysis workflow strongly motivate the need for a
unified and reusable approach that will facilitate robust model
inferencing, while being compliant with the workflow needs.
We present PADDLE, a unified machine learning framework
to fulfill this need.

A. Overview of the PADDLE Framework

PADDLE is comprised of the following modules (Figure ??):
(i) Deep Feature Extraction: feature extraction from raw data
using deep information decomposition, (ii) Model Design:
automated parameter tuning and robust model selection to
trade-off between model complexity and generalizability, (iii)
Multi-source Analysis: enables joint inferences when there
are multiple data sources, e.g. correlation studies, and (iv)
Visualization: allows exploration of the learned feature space
and feature influences on the designed model.

Data	Source	1 Deep	Feature	
Extraction Model	Design Visualization

Multi-Source	
Analysis

Data	Source	2
(Optional)

Deep	Feature	
Extraction

Model	Design Visualization

Figure 1. PADDLE – a generic machine learning framework for performance
data analysis. The proposed framework is well-suited for a wide-range of
problems that require the design of models for predictive or comparative
analysis using one or more data sources. In addition to being robust and
accurate, the resulting models are also easily interpretable.

The data source (black boxes in Figure ??) corresponds to
the tuple (X ,Y), where X and Y denote the set of independent
variables and predictive dependent variable respectively in the
collected data. Note that, unlike several other machine learning
pipelines, PADDLE supports continuous, discrete or categorical
variables for both inputs and outputs. Similar to many state-
of-the-art machine learning systems, a key component of
PADDLE is the unsupervised extraction of latent features from
high-dimensional input data (Deep Feature Extraction module,
blue box). There is anecdotal evidence in recent ML literature
that data-driven feature learning can provide much better
insights compared to conventional feature selection techniques,
e.g. lasso [?], commonly adopted by performance analysts. In
addition to providing robust low-dimensional representations,
the deep feature extraction step models the dependencies in
X and disentangles the factors of influence for the subsequent
model design step.

Given the set of inferred latent features, designing an
effective and robust model, f : X ! Y , is central to
performance analysis (Model Design module, red box). In
addition to enabling prediction, such a surrogate model allows
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Collect	Data

Collect	Data
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(b) Multi-source data analysis

Figure 2. User-centric workflows for using PADDLE in typical performance analysis studies in high performance computing.

analysts to gain intuitions about the entire space of X . The
large amounts of time typically spent by the analyst to find
the right model and to fine-tune it for robust performance
is significantly reduced with PADDLE. It achieves this by
exploiting the hierarchical nature of the latent space to perform
automated model selection and utilizes a noise-enhanced
learning strategy to avoid overfitting. PADDLE also supports
predictive analysis tasks that require the use of multiple data
sources (e.g. data from multiple applications), i.e., to design
a model f : (X1,X2) ! Y , where X1 and X2 correspond to
two data sources. This is done by the Multi-source Analysis

module that uses the latent features from two data sources to
jointly infer a model or perform correlation studies.

The final crucial component of PADDLE is the Visualization

module (green box), that enables analysts to understand the
inferred black-box models through a hierarchical visualization
of latent features, which are in turn defined in terms of the
independent variables in the data. PADDLE presents the com-
position of latent features using a force-directed graph layout,
where the edge thickness indicates the strength of correlation.
Further, the feature importances from the inferred model are
hierarchically propagated to the independent variables in the
data to highlight their influence on the prediction.

B. Using PADDLE: User-centric Workflows

Figure ?? demonstrates how an analyst can use PADDLE for
analysis of single source and multi-source data. For example,
Figure ??(a) shows a generic workflow for performance
prediction studies, where the goal is to predict a performance
metric (e.g. execution time) using a set of user-specified
attributes from a single source (e.g. network counters). When
using PADDLE, the user provides both independent and
dependent variables, with the goal of inferring a robust and
interpretable model. Subsequently, PADDLE performs deep
feature extraction, automatically carries out model selection
and produces the predictive model and model visualizations
for further analysis. The network prediction case study in
Section ?? is a prototypical example of this workflow.

Another common analytics workflow in performance analysis
is to use multiple data sources for joint inference or comparative
analysis (Figure ??(b)). In this scenario, PADDLE performs
feature extraction from the two datasets independently, and
then performs joint model inferencing to enable predictive
modeling and correlation studies. In addition, the hierarchical
visualization is flexible to allow comparative analysis of the

features from the two sources. The linear solver prediction
and performance coverage analysis case studies in Sections ??

and ?? respectively are different use-cases of this workflow.

IV. DESCRIPTION OF MODULES IN PADDLE
In this section, we describe the different modules in the

PADDLE framework, as illustrated in Figure ??.

A. Deep Feature Extraction Module

As the first step, PADDLE performs feature extraction
from input data using deep information decomposition [?],
[?]. Conceptually, this is similar to modern deep learning
techniques that learn a sequence of filters to create concise
representations [?], [?]. However, unlike deep neural networks,
the proposed approach is effective even for small or moderate-
sized data. Further, when compared to shallow feature learning
strategies, e.g. independent component analysis, which are
typically used for small-sized data, our method is more robust
to data uncertainties and can exploit the inherent correlations
between input variables. Finally, existing feature learning
approaches do not generalize to discrete or categorical data,
which is common in HPC. In contrast, our technique is
applicable to both discrete and categorical variables.

Formulation: Denoting a set of multivariate random variables
by X = {Xi}Ni=1, dependencies between the variables can be
quantified using the multivariate mutual information [?], also
known as total correlation (TC), which is defined as follows:

TC(X) =
NX

i=1

H(Xi)�H(X) (1)

where H(Xi) denotes the marginal entropy. This quantity is
non-negative and zero only when all the Xi’s are independent.
Further, denoting the latent source of all dependence in X

by Y , we obtain TC(X|Y ) = 0. Therefore, in the feature
extraction step, PADDLE solves the problem of searching
for a feature Y that minimizes TC(X|Y ). Equivalently, we
can define the reduction in TC after conditioning on Y as
TC(X;Y ) = TC(X)� TC(X|Y ).

In our context, X corresponds to the set of independent
variables in the data. The optimization begins with X , con-
structs Y0 to maximize TC(X;Y0). Subsequently, it computes
the remainder information not explained by Y0, and learns
another feature, Y1, that infers additional dependence structure.
This procedure is repeated for k layers until the entirety of
multivariate mutual information in the data is explained.



B. Model Design Module

In this module, PADDLE uses the latent features to build
predictive models. The primary challenges in this step include
choosing a suitable ML technique and tuning its parameters. In
existing practice, the prediction error on validation data is used
as the guiding metric for these two tasks. Mathematically,
prediction error can be decomposed into two competing
components: bias and variance. As we increase the model
complexity, the bias term reduces, while the variance becomes
significantly larger. Similarly, the uncertainty of a model
directly relies on the amount of data used to fit the model.

In addition to choosing parameters through cross-validation,
PADDLE automatically analyzes the robustness of popular
machine learning algorithms and suggests suitable models based
on their bias-variance trade-off. More specifically, PADDLE
utilizes the hierarchical representation from the Deep Feature

Extraction module to evaluate the robustness of the learned
models. It fits multiple models with increasing number of latent
variables k, and evaluates their consistency with increasing
amounts of information about the input data.

For example, Figure ??(a) illustrates the analysis carried out
by PADDLE for execution time prediction with network data
(Section ??), wherein the prediction accuracies (R2 statistic)
obtained using different algorithms for increasing number of
latent features are shown. The x-axis corresponds to the total
correlation described by the set of latent features until that
layer. As it can be observed, all methods progressively improve
with more latent features (note: each marker corresponds to one
additional layer). However, as we go beyond 5 layers, higher-
order polynomial regression fails (poly2 and poly3), and only
the ensemble methods demonstrate a stable performance, while
simpler models such as linear regression (poly1) achieve lower
accuracy. This corroborates the observation in [?], wherein the
authors found through extensive empirical studies that ensemble
methods produced the best performance for this problem.

(a) Analysis with raw data (b) Robust modeling with noise-
enhanced data

Figure 3. Model Design module – PADDLE analyzes the robustness of
popular machine learning algorithms (polynomial regressors of order 1, 2, 3;
Random Forests; Gradient Boosted Trees; and Extremely Randomized Trees)
and automatically makes recommendations based on cross-validation.

This sudden performance degradation of complex models
indicates the lack of non-robustness of the regression model,
i.e. overfitting. PADDLE alleviates this crucial challenge by
employing a noise-enhanced learning strategy. By adding uncor-
related noise to the input data, PADDLE regularizes the model
design process [?]. Surprisingly, as shown in Figure ??(b), with

the proposed robust feature learning, even a simple 2nd-order
polynomial regression behaves consistently and matches the
performance of sophisticated ensemble methods. Consequently,
PADDLE tests the robustness of different algorithms, tunes
parameters using cross validation and recommends the model
that is highly accurate, robust and simple (for interpretability).

C. Multi-source Analysis Module

This is a critical component of PADDLE, designed to deal
with multiple sources of data. More specifically, this module
supports three functionalities that are applicable to several
commonly encountered scenarios: (i) Joint Feature Learning:
In cases where there is a need to combine features from different
data sources, PADDLE enables inferencing of a joint feature
space prior to invoking the Model Design module; (ii) Mapping:
Learn a function mapping between two feature spaces extracted
from two sources of data; (iii) Comparison: Direct comparison
of deep features from two data sources using popular statistical
metrics, e.g. KL-divergence.

D. Visualization Module

In addition to automating model design, PADDLE allows
investigation of the learned models. This is achieved by visual-
izing the inferred latent feature space and their composition in
terms of the input variables. The force-directed graph layout
provides a holistic view of the input space. More specifically,
the correlations between the variables, and the influence of
the latent features on prediction are presented. For example,
Figure ??(a) shows the latent space inferred by PADDLE
for the network data analysis. The circles correspond to the
learned features and their sizes indicate the amount of total
correlation represented by each of those features, and they are
colored by their importance in the actual prediction (darker
shades of blue correspond to higher importance, white indicates
not important at all). The edges between input variables and a
feature indicate the feature composition, and the edge thickness
indicates their contribution to the total correlation explained by
that feature. Finally, to arrive at the influence chart in Figure
??(b), PADDLE uses a top-down belief propagation strategy
that distributes the importance score of a feature to the variables
based on their contribution to the total correlation.

V. CASE STUDIES

In this section, we present HPC performance analysis studies
that use PADDLE, and compare the solutions with previous
tailored approaches. In addition to being diverse in their
mathematical formulations, these case studies demonstrate the
usefulness of different modules in PADDLE. Figure ?? shows
the algorithmic pipeline used by PADDLE for the analyses.

A. Study I: Predicting Execution Time

In this study, we use PADDLE to analyze the performance of
different task mappings using the data described in Section ??.
The dependent variable in this case is the execution time, and
the independent variables correspond to statistics from network
counters and analytical formulations. As shown in Figure ??,
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(a) Latent space visualization with the features colored by their influence on the prediction
(darker shades of blue indicate more influence).

(b) Influence chart showing feature importance, obtained
through hierarchical belief propagation.

Figure 4. Study I: Predicting the execution time of different task mappings in the network data using PADDLE.
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Choice Classification

3.	Performance	
Coverage	Analysis

Measurements	from	
parent	application Efficiency	Loss Regression
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Figure 5. Overview of analyzing different performance data using PADDLE.

this can be formulated as learning a regression function f(.)
to predict execution time. The workflow adopted by PADDLE
for this problem is the basic single data source workflow
from Figure ??. In [?], the authors extensively analyzed the
performance of popular machine learning techniques for this
problem and reported that ensemble methods, such as gradient
boosting machines, produced the most accurate predictions.
Despite their prediction capability, ensemble models are very
complex for the analyst to understand and infer relationships
between the different variables.

Approach: We follow the experiment setup used in [?], wherein
33% of the samples in the dataset are used for training the
model, and the rest for evaluation. During the training stage,
PADDLE automatically designs the optimal model for the
task at hand. For an unseen test sample, PADDLE computes
its latent features and makes a prediction with the designed
regression model. Following common practice, we use the R

2

statistic and the mean absolute error (MAE) metric to measure
the quality of prediction on the testing set.

Results: The performance of different regression models,
obtained using extensive parameter tuning, is listed in Table ??

and compared with PADDLE. As can be observed, polynomial
regression models, directly operating on the raw data, overfit
and completely fail, while ensemble models produce satisfac-
tory performance. Interestingly, PADDLE outputs a 2nd-order

polynomial regressor, by automatically trading off between
model complexity and prediction, and achieves improved
prediction. Note that, in contrast to a 2nd-order polynomial
regressor operating on the raw data, the success of the same
model in PADDLE can be directly attributed to the deep feature
extraction and robust learning strategies. Figure ??(a) shows
the visualization of the latent space inferred by PADDLE.
It reveals that the feature F0 is the most influential when
predicting execution time, and also captures the most total
correlation in the input data. An analyst can quickly infer
insights about the data from this graph layout. For example,
the variable max fifo is correlated to both avg queue (F1) and
avg bytes (F0), and six features were sufficient to explain all
mutual information in this 19-dimensional dataset. Finally, the
hierarchical structure of the latent space enables propagation
of influences to the individual input variables (Figure ??(b)).

TABLE I
PREDICTION ACCURACY COMPARISON FOR NETWORK DATA.

Method R2 MAE

Poly-2 0 0.697
Gradient Boosted Trees 0.96 0.012
Extremely Randomized Trees 0.955 0.013

PADDLE 0.972 0.009

B. Study II: Identifying the Fastest Linear Solver

In this study, we want to predict the optimal preconditioner
and linear solver (PC-LS) combination for solving a linear
system (dataset described in Section ??). As shown in Figure ??,
this problem is formulated as a classification task, wherein
each PC-LS combination is viewed as a class. In this case,
the training data has two sources of measurements, (i) X1:
properties of the input sparse matrix, and (ii) X2: execution
times of different solvers for each matrix in the training set.
However, for a test sample, we have access only to the matrix
properties and not the latter. This necessitates multi-source
analysis, wherein we learn a mapping between the two feature
spaces, prior to model design for PC-LS prediction. This
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(a) Illustration of PADDLE workflow for linear solver prediction. (b) Runtime of the predicted vs. oracle
PC-LS (using basic features only).
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(d) A subset of factors from the latent space inferred by PADDLE for the MFEM matrices dataset.

Figure 6. Study II: Using PADDLE to predict the best performing PC-LS choice for the MFEM dataset. In addition to producing highly accurate predictions
compared to state-of-the-art algorithms, the latent space visualization reveals clusters of solvers in terms of their effectiveness to this data.

workflow is described in Figure ??(a), which first infers the
latent spaces for the two data sources, and subsequently uses
the Multi-source Analysis module to learn the mapping between
the two spaces.

The prediction problem essentially boils down to observing
a row from X1 and predicting the “best” column from X2.
Existing out-of-the-box classifiers do not associate similarly
good PC-LS choices, and, consequently, fail to distinguish
reasonably good choices from extremely poor ones. This
provides no protection against very expensive mistakes (e.g.,
identifying the slowest PC-LS as the fastest), because a
classification model is not sensitive to the actual runtime
values. In contrast, PADDLE enables us to encode the entire
performance profile in the latent space obtained using X2,
thereby making more reasonable choices even when the optimal
solution is not picked.

Approach: PADDLE first identifies latent features, bX1 and bX2

respectively. It is expected that matrices with similar properties,
should group together in bX1 and matrices that are close to each
other in bX2 are expected to exhibit similar execution times with
regard to different PC-LS combinations. Since both bX1, and
bX2 are representations of the same matrices in different spaces,

PADDLE automatically learns a mapping between these spaces
to predict the solver performance. Formally, PADDLE learns
the transformation g : bX1 7! bX2.

Let X t
1 represent the matrix properties for the set of test

samples. PADDLE computes its corresponding latent space
representation resulting in bX t

1 . Subsequently, the learned
mapping g is used to transform these latent features into bX t

2 .

Finally, PADDLE uses a simple K-Nearest Neighbor classifier
to make the prediction. Note that, for a neighbor it considers
only the PC-LS choices whose performance is within 10% of
the best execution time for that matrix.

Results: For evaluating PC-LS prediction quality, we use the
Absolute Relative Error (ARE) metric, defined as follows:

ARE =
|tp � to|

to
(2)

where tp is the execution time for the predicted PC-LS choice,
and to is the oracle execution time, i.e. the execution time
of the best PC-LS, for an unseen test matrix. Compared to
conventional metrics such as classification accuracy, this metric
can reveal the worst-case behavior of the prediction methods.
Table ?? shows the prediction performance obtained using
state-of-the-art approaches compared to PADDLE, for the
MFEM dataset (Section ??). As it can be observed from the
results, PADDLE outperforms existing hand-tuned solutions
in the literature. Figures ??(b), (c) show that with robust model
learning, the performance improvements obtained by adding
domain-specific features is not significant.

Investigating the latent spaces of the two data sources
can provide interesting insights into the data. For example,
visualizing the latent space of X2 in Figure ??(d) reveals
groups of PC-LS choices that exhibit similar performance
characteristics. The constituent methods in feature F1 are
characterized by the solver (GMRES and variants), with a
wide-range of preconditioners. Whereas, the feature F5 reveals
when the domain decomposition preconditioner is used, the
actual linear solver has a lesser influence on the observed



TABLE II
COMPARISON OF THE DIFFERENT PREDICTION ALGORITHMS IN

DETERMINING THE PC-LS CHOICE. IN EACH CASE, WE SHOW THE MEAN
ABSOLUTE RELATIVE ERROR COMPUTED USING THE ORACLE EXECUTION

TIMES FOR THE UNSEEN TEST MATRICES.

Method Basic Basic + Domain-Specific

SVM 1.58 0.92
k-NN 3.66 0.39
Yeom et al. [?] 0.58 0.31

PADDLE 0.13 0.09

performance. Note that, the performance characteristics of
these choices are dependent on the implementation as well as
the data and the numerical algorithms, thereby making insights
from PADDLE highly valuable.

C. Study III: Performance Coverage of Proxy Applications

In this study, we use PADDLE to perform comparative
studies between two applications based on their performance
characteristics (dataset described in Section ??). Figure ??(a)
shows the typical representation of how proxy applications are
compared against their parents. The X-axis shows how well
a resource alone can predict the parallel efficiency loss of an
application on a node. The Y -axis shows the coverage score
of each resource for the proxy application.

Approach: This is an interesting use-case for PADDLE where
the Multi-source Analysis module is utilized to deal with
two data sources (corresponding to the parent and proxy
applications), as well as multiple resource groups within an
application. While the computation of resource importance is
performed using the hardware counter data from the parent
application, the deep features from both the applications are
compared to obtain the coverage score. This is illustrated in
Figure ??. Here, PADDLE extracts the deep features using
the counter data corresponding to each of the resource groups,
and combines these features to build a joint feature space by
exploiting correlations across different resources. Subsequently,
the Model Design module automatically builds a regression
model to predict efficiency loss of the parent application.
The feature influences returned by PADDLE are used as the
resource importance scores.

PADDLE uses the comparison functionality in the Multi-

source Analysis module to compute the coverage score for
each resource group. As described earlier, this is done by using
statistical metrics on the deep features from the two applications.
PADDLE finally provides the following outputs – (1) the
overall resource importance vs coverage chart; (2) automatically
tuned model for runtime prediction; (3) hierarchical feature
representations, i.e. joint features ! resource-specific features
! counter data. Looking at both the importance and coverage
scores for the resource groups can effectively summarize the
performance characteristics of the two applications.

Results: Figure ??(a) reveals that memory and the cache
subsystem (L3, L2, L1) are the most important resources
for OpenMC on Intel Xeon. Figure ??(b) presents the joint

Resource	
Group	1

Deep	Feature	
Extraction

Resource	
Group	2

Deep	Feature	
Extraction

Resource	
Group	1

Deep	Feature	
Extraction

Deep	Feature	
Extraction

Resource	
Group	2

MSA
Comparison

MSA
Comparison

MSA
Joint	Feature	
Learning

Model	Design

Visualization

Parent 
Application

Proxy
Application

Resource	
Importance

Coverage	
Score

Figure 7. Illustration of the workflow for using PADDLE to perform coverage
analysis of a proxy application with respect to a parent application.

feature space from PADDLE showing correlations across
different resources and the importance of features in predicting
performance (darker shade indicates higher influence). The
joint latent space visualization reveals that the feature F3 is
the most influential in describing efficiency loss of OpenMC.
Further, this latent feature correlates to performance events
corresponding to MEM Y1, L3 Y1, L2 Y2, and L1 Y2. Here,
for each of the resources, Yi corresponds to the resource-
specific features inferred by PADDLE. In other words, all of
these components have similar impact on the efficiency loss of
OpenMC as the application scales on a node. This conforms
with the observation in Figure ??(a) where MEM, L3, L2, and
L1 get similar resource importances. Figure ??(a) also shows
that only MEM is covered well, and others are not. This again
conforms with the published coverage analysis of XSBench
with respect to OpenMC on Intel Xeon in [?].

PADDLE also presents the counter-level correlation for each
resource. Figure ??(c) shows the counter-level correlations
for MEM. The size of the latent feature Y0 shows that node
prefetch, store, and last level cache misses contribute the most
to the total correlation in the data. Since on current architectures,
multiple components and complex interactions among them
make it difficult to study the correlations among different
performance events, adopting a principled framework such as
PADDLE can provide valuable insights in that regard.

VI. RELATED WORK

Most uses of machine learning in HPC involve applying
supervised learning algorithms to automate challenging design
choices, which would otherwise require significant manual
effort. For example, Sukhija et al. [?] use supervised learning
to select the best dynamic loop scheduling algorithm for parallel
loops to improve on-node performance. Others utilize decision
tree classifiers to identify the fastest parameter values for
different loops in a code [?] and to associate performance
metrics with program execution behavior [?]. Bhowmick et
al. [?] first formulated the problem of choosing the optimal
solver for a linear system as a classification task, and other



(a) Resource importance vs. coverage.
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(b) Visualization of the joint latent space that combines the latent spaces from all resource
groups (darker shades of blue indicate higher influence in performance prediction).

��������������������
����

��

�����������������
������

��

��������������������
�������������

��

��������������������
����������

���������������
������

��

��������������������
��

��

����������������
������

��

�������������������
������

��������������������
�����

����������������

�������������������������������������
���������

��������������������
������

��������������������
������������

�����������
����������

����������������
������

��

(c) Latent features for the MEM resource group, the most influential in performance prediction.

Figure 8. Study III: Coverage analysis of XSBench using PADDLE with respect to the OpenMC application.

TABLE III
COMPARISON OF THE PROPOSED FRAMEWORK WITH EXISTING POPULAR ML APPROACHES.

Features
Dimensionality

Reduction

Supervised

Learning

Deep Neural

Networks

Proposed

Approach

Hierarchical feature learning ⇥ ⇥ X X
Low dimensional structure inference X ⇥ X X
Supports the use of multi-source data ⇥ ⇥ X X
Supports the use of categorical data ⇥ X ⇥ X
Interpretability of the inferred models X X ⇥ X
Robustness to limited training data N/A X ⇥ X
Facilitates model selection N/A ⇥ ⇥ X
References [?], [?], [?] [?], [?], [?] [?], [?] N/A

subsequent efforts, such as the Lighthouse taxonomy system,
have developed effective classification pipelines to do the same
for sparse linear systems [?]. Each of these HPC problems
deploys different machine learning algorithms and analysis
pipelines, specifically tuned for the problem at hand, possibly
with guidance from machine learning experts. Consequently,
the resulting solutions cannot be easily generalized to other
problems. The proposed analysis framework, PADDLE, is
specifically designed to enable solution generalization and easy
interpretability of the inferred models.

In Table ??, we provide a comparison of PADDLE with
some of the commonly used machine learning approaches
in performance analysis and emphasize the gaps bridged by

our approach. Note that a typical machine learning pipeline
combines and tunes several different components for dimen-
sionality reduction, supervised learning, visualization and
interpretation. A unique feature of our approach is that it
provides a unified strategy to formulate different performance
analysis tasks using a common optimization algorithm. In
addition to simplifying the design process for data analysis
pipelines, PADDLE produces high-fidelity models that perform
similar to or sometimes better than state-of-the-art solutions.

VII. DISCUSSION AND SUMMARY

With the increase in complexity and number of components
present in HPC systems, performance analysis and interpre-
tation of data are becoming more challenging. As a result,



automated performance analysis using machine learning is
becoming more commonplace in HPC. The existing practice
of using machine learning techniques for performance analysis
includes a number of steps that are common across different
types of analyses such as performance prediction and compara-
tive study. However, today’s approaches suffer from a number
of challenges such as lack of solution reusability, lack of
understanding of the inherent assumptions made by commonly
adopted machine learning techniques, and hard-to-interpret
models that are highly opaque to the analyst. In order to
address all these challenges, we presented a generic machine
learning framework, PADDLE in this paper.

The presented data-driven learning framework provides a
highly adaptable unified environment for conducting a wide-
range of performance analysis tasks such as performance
comparison, prediction, and extraction of correlation among
different features. In addition to standard performance predic-
tion, PADDLE supports performance studies across multiple
data sources, leverages a hierarchical feature learning approach
to provide parameter-tuning free modeling, and enables robust
generation of highly interpretable models. We presented three
performance analysis studies in this paper to demonstrate how
analysis tasks from widely different domains can be formulated
easily to leverage the analysis and visualization pipelines of
PADDLE. Given that machine learning techniques are being
used heavily for extracting information from data and all such
tasks involve certain common steps, the principled approach
in PADDLE is timely since it bridges the gap between the
HPC performance analysis and data science communities.
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