“mcrEngine”
a Scalable Checkpointing System using
Data-Aware Aggregation and Compression

Tanzima Z. Islam, Saurabh Bagchi, Rudolf Eigenmann
School of ECE, Purdue University
West Latayette, IN

Kathryn Mohror, Adam Moody, Bronis R. de Supinski
Lawrence Livermore National Laboratory
Livermore, CA



Background

@ Checkpoint-restart widely used
@ Projected MTBF at exascale 3-26 minutes

@ MPI applications

@ Take globally coordinated checkpoints asynchronously
@ Application-level checkpoint

@ High-level data format for portability
@ HDFS5, Adios, netCDF etc.
@ Checkpoint writing
N=>1 (Funneled) N-)M (Grouped) ; HDFS CH@W@lrect)
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Impact of Load on PES at Large Scale

@ IOR
@ Direct (N=»N): 78MB per process

@ Observations:
(—) Large average write timeg less frequent checkpointing

(—) Large average read time poor application performance
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What is the Problem?

@ Today’s checkpoint-restart systems will not scale
@ Increasing number of concurrent transters

@ [Increasing volume of checkpoint data
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Our Contributions

@ Data-aware aggregation
@ Reduces the number of concurrent transfers
@ Improves compressibility of checkpoints by using semantic information

@ Data-aware compression
@ Reduces data almost 2x more than simply concatenating then compressing

@ Design and develop mcrEngine
@ Grouped (N=>»M) checkpointing system
@ Improves checkpointing frequency
@ Improves application performance
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Overview

@ Data aggregation & compression

-

l& Tanzima Islam (tislam@purdue.edu) mcrEngine: Data-aware Aggregation & Compression



Data-Agnostic Schemes

@ Agnostic scheme — concatenate checkpoints
c First Phase
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@ Agnostic-block scheme — interleave fixed-size blocks:
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C, C, |
[1-B] [B+1-2B] C, C, C, C, . !
[1-B] [1-B]  [B+1-2B] [B+12B] | PGZip .
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[1-]23] [B+1-2B]
@ QObservations:
(+) Easy
(—) Low compression ratio
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Data-Aware Aggregation & Compression

@ Aware scheme — concatenate similar variables
@ Aware-block scheme — interleave similar variables
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Data-type aware compression Lempel-Ziv

First Phase

e Hy‘w
mm”

Output buffer %//é il

QI

Second Phase

@ Tanzima Islam (tislam@purdue.edu)




Group

L -

—_— / HHHHH
ngggﬁ; t } it paw { N

Group —= /
Compute I% DB Aggregator
Component =S

Z1p

Group —= /
S— ]1@ JEN. //
Component Y

How mcrEngine Works

@ CNC : Compute node component
@ ANC: Aggregator node component
@ Rank-order groups, Grouped (N=»M) transfer
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Overview

@ Evaluation
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Evaluation

@ Applications

ALE3D - 4.8GB per checkpoint set
Cactus — 2.41GB per checkpoint set
Cosmology — 1.1GB per checkpoint set

€ © © ©

Implosion — 13MB per checkpoint set

@ Experimental test-bed
@ [LNL’s Sierra: 261.3 TFLOP/s, Linux cluster
@ 237328 cores, 1.3 Petabyte Lustre file system

@ Compression algorithm

FPC [1] for double-precision float
Fpzip [2] for single-precision float
Lempel-Ziv for all other data-types

e © © ¢

pGzip for general-purpose compression
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Evaluation Metrics

@ Effectiveness of data-aware compression

@ What is the benefit of multiple compression phases?
@ How does group size affect compression ratio?

Uncompressed size

Compression ratio = :
Compressed size

@ Performance of mcrEngine
@ Overhead of the checkpointing phase
@ Overhead of the restart phase
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are Beneficial

@ Data-type aware compression improves compressibility
@ First phase changes underlying data format

@ Data-agnostic double compression is not beneficial
@ Because, data-format is non-uniform and uncompressible
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Impact of Group Size on Compression Ratio
@ Different merging schemes better for different applications

@ Larger group size beneficial for certain applications

@ ALE3D: Improvement of 8% from group size 2 to 32
ALE3D Cactus
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Data-Aware Technique Always Wins over Data-Agnostic

@ Data-aware technique always yields better compression
ratio than Data-Agnostic technique
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Summary of Effectiveness Study

Data-aware compression always wins
@ Reduces gigabytes of data for Cactus

Larger group sizes may improve compression ratio
Different merging schemes for different applications

Compression ratio follows course of simulation
@ Details in our paper

Tanzima Islam (tislam@purdue.edu) mcrEngine: Data-aware Aggregation & Compression

16



2

Impact of Data-Aware Compression on Latency

@ JOR with Grouped(N=>»M) transfer, groups of 32 processes
@ Data-aware: 1.2GB, data-agnostic: 2.4GB

@ Data-aware compression improves I/O performance at large scale

@ Improvement during write 43% - 70%
@ Improvement during read 48% - 70%
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Average Read Time (sec) Average Write Time (sec)

Impact of Aggregation & Compression on Latency

Used IOR

@ Direct (N=»N): 87MB per process
@ Grouped (N=»M): Group size 32, 1.21GB per aggregator
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End-to-End Checkpointing Overhead

@ 15,408 processes
@ Group size of 32 for N=»M schemes
@ Each process takes a checkpoint

@ Converts network bound operation into CPU bound one

350 Reduction in
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End-to-End Restart Overhead

@ Reduced overall restart overhead
@ Reduced network load and transfer time
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Conclusion

@ Developed data-aware checkpoint compression technique
@ Relative improvement in compression ratio up to 115%

@ Investigated different merging techniques
@ Demonstrated effectiveness using real-world applications

@ Designed and developed mcrEngine

@ Reduces recovery overhead by more than 62%
@ Reduces checkpointing overhead by up to 87%
@ Improves scalability of checkpoint-restart systems

ILL Tanzima Islam (tislam@purdue.edu) mcrEngine: Data-aware Aggregation & Compression 21



L

Contact Information

@ Tanzima Islam ( )
@ Website: web.ics.purdue.edu/~tislam
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