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Abstract—LLM-based data generation for real-world tabular
data can be challenged by the lack of sufficient semantic context
in feature names used to describe columns. We hypothesize that
enriching prompts with even minimal contextual information,
such as a brief explanation of what each feature represents can
improve both the quality and efficiency of data generation. To test
this, we investigate three prompt construction methods: Expert-
guided, LLM-guided, and Novel-Mapping, with the latter two
being automated approaches. Using the GReaT framework, our
experiments show that context-enriched prompts significantly en-
hance the quality of the generated data while improving training
efficiency. Notably, the LLM-guided method performed on par
with expert-guided approaches, demonstrating its effectiveness as
a scalable alternative.

Index Terms—Large-language Models, Prompt Construction,
Tabular Data, Synthetic Data Generation

I. INTRODUCTION

Generating realistic synthetic tabular data is a signifi-
cant challenge with important applications in data augmenta-
tion [1], [2], privacy preservation [3], and data imputation [4].
While a wide variety of approaches have been proposed, LLM-
based tabular data generation has emerged as a promising
research direction. In this regard, Borisov et al. recently pro-
posed GReaT (Generation of Realistic Tabular data) [5], which
transforms tabular data into textual encodings (or prompts)
and fine-tunes pre-trained LLMs to generate synthetic samples.
More specifically, the text prompt in GReaT uses a subject-
predicate-object schema, where the subject is the feature name.
However, feature names in many real-world tabular datasets
can be ambiguous, contain nondecipherable abbreviations or
symbols, and even generic labels with no semantic context
(e.g., attribute A, attribute B, etc.). In such cases, using these
generic feature names might be insufficient to obtain high-
fidelity synthetic samples.

In this paper, we hypothesize that enriching text prompts
with domain-specific insights by explaining what each fea-
ture represents can significantly enhance an LLM’s abil-
ity to synthesize high-quality tabular data. Specifically,
we propose two automated prompt construction protocols
(Figure 1) called LLM-guided and Novel-Mapping.
For LLM-guided, if the feature names are partially spec-

* equal contribution

ified, an external LLM is consulted to automatically ex-
pand feature descriptions based on the feature and dataset
names. If the feature names are completely generic, then
the Novel-Mapping approach provides an LLM with addi-
tional contextual information, such as value ranges and an ar-
bitrary scientific domain name to improve the interpretation of
feature names. We evaluate the effectiveness of this automated
approach by comparing it to a method wherein a domain expert
provides detailed feature descriptors (Expert-guided) to
improve the interpretation of feature names.

Through experiments on diverse datasets and two different
LLMs, we demonstrate that our context-enriched prompting
strategies consistently outperform the baseline of using raw
feature names, especially when the feature names are am-
biguous or generic. The enhanced prompts not only improve
the quality of the generated data, but also significantly boost
training efficiency (< 25% of the epochs required by the
baseline to achieve similar performance). Notably, the ben-
efits persist even with parameter-efficient fine-tuning methods
such as LoRA [6]. Our experiments also show that our pro-
posed LLM-guided approach achieves just as good or bet-
ter results automatically compared to the Expert-guided
method. Given the high cost and scalability challenges of the
expert-guided approach, the LLM-guided method offers a
more efficient and scalable solution by eliminating the need
for extensive manual input, making it a viable alternative for
generating high-quality feature descriptors. Our key findings
can be summarized as follows:

• When feature names are inherently interpretable, all ap-
proaches, including the baseline, demonstrate comparable
performance in generating synthetic data.

• For datasets with cryptic or generic feature names, both
LLM-guided and Novel-Mapping protocols offer
significant improvements over the baseline method.

• The feature descriptions generated by the LLM-guided
method can enable downstream analyses to achieve
results that are comparable to or better than those
from manually annotating feature names with the
Expert-guided method.

• The benefits of our proposed methods persist even when
using parameter-efficient fine-tuning techniques such as
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Fig. 1: An overview of our approach for LLM-based tabular data generation. Our contributions include designing new prompt
construction strategies and investigating their role in improving the quality of synthesized samples.

LoRA, highlighting their robustness and versatility.
While we demonstrate the effectiveness of our proposed

prompt construction method using GReaT, it’s important to
note that this methodology is generic and applicable to var-
ious prompting scenarios. Our approach differs from recent
Retrieval Augmented Generation (RAG)-based techniques in
its timing and integration of context. Unlike RAG, which
incorporates context at runtime during the inference stage,
our method integrates context at the input stage, before
any learning occurs. This positions our approach as a pre-
processing step that influences the LLM’s learning process
from the outset, complementing rather than replacing RAG-
based knowledge augmentation techniques. The primary goal
of this paper extends beyond improving isolated responses;
we aim to study the influence of prompt enhancement on
the generation of data distributions. By addressing the less-
explored role of prompt engineering in shaping overall data
patterns, our research fills a significant gap in the literature.

II. BACKGROUND

Problem Setup: Let D = {(xi, yi)}Ni=1 denote a tabular
dataset with N samples, where xi ∈ X is a set of features
in Rn and yi ∈ Y is the corresponding target (categorical or
continuous-valued). Without loss of generality, we refer to the
names of the n input features in the table as {c1 · · · cn}. We
aim to build a generative model that can synthesize realistic
samples {(x̃j , ỹj)}j , where x̃j ∈ X and ỹj ∈ Y .
An Overview of GReaT: Our study builds on a tabular data
generator called GReaT. In this approach, each n−dimensional
input sample (a row in the input data matrix X ∈ RT×n) is first
transformed into a textual encoding, and subsequently used as
a prompt to query an LLM. This encoding strategy, which we
refer to as Baseline encoding, constructs row-wise prompts
by directly utilizing the feature names and adding the is
qualifier to separate feature names and their corresponding
values. E.g., the encoding for the ith row of the input matrix
X can be written as “c1 is x1

i , c2 is x2
i , · · · , cn is xn

i ”,
where xk

i represents the value of the kth feature from the ith

sample. GReaT then fine-tunes pre-trained LLMs on these

prompts using a next-token prediction objective. Once the
model is fine-tuned, new samples can be unconditionally
generated by post-processing the LLM’s response for a test
prompt that does not contain the feature values.

III. PROPOSED WORK

While the Baseline encoding has been shown to lead
to strong generation capabilities [5], with real-world tabular
datasets, the feature names are not always chosen to provide
sufficient context for the observed values; for example, real-
world datasets can contain ambiguous or generic feature names
such as Attribute A. Furthermore, it is common to use abbrevia-
tions or symbols that are not readily decipherable (e.g., fAlpha
in the magic telescope dataset) without sufficient expertise in
the considered domain. In such cases, it can be challenging
for an LLM to leverage useful priors from its pre-training,
thereby impacting its generative performance. Consequently,
the focus of this work is to study the impact of enriching
the prompts with better clarity and specificity on an LLM’s
ability to generate high-quality tabular data. To this end, we
propose a prompt construction protocol: Expert-guided to
expand feature names with domain-specific descriptors during
prompt construction. We also explore the effectiveness of
providing further context such as value ranges and scientific
domains to the LLM when expanding the feature names
(Novel-Mapping). This paper compares the effectiveness
of augmenting feature names with descriptions during prompt
construction with that of manually adding domain-specific
descriptions from expert knowledge (Expert-guided).

A. Prompt Construction Protocols

(i) Expert-guided: This approach presents the best case
scenario where an expert user is willing to put in man-
ual efforts to describe the semantic context of each col-
umn in the tabular dataset while retaining the is qualifier
from Baseline encoding.
(ii) LLM-guided: We propose to leverage a pre-trained Large
Language Model (LLM) such as ChatGPT [7] to automate
the feature-name expansion process. Specifically, we query
the ChatGPT API with the following prompt: “For a dataset



named <name>, the given column names are <list of column
names>. You need to provide a short one-line description of
each feature.” The response from ChatGPT is then parsed and
used in lieu of the original feature names ck during prompt
construction for the fine-tuning step. Note that, this approach
is applicable only when the feature names are at least partially
specified (e.g., abbreviations or symbols).
(iii) Novel-Mapping: Finally, in scenarios where the col-
umn names contain no useful information (e.g., Column A,
Column B, · · · ), we propose the Novel-Mapping protocol,
which will query an external LLM to generate a suitable
feature name from an arbitrary domain (e.g., physics); for
example, one can use the query “I have a dataset that does
not have meaningful names for features. Given the ranges of
the columns are <list of ranges>, suggest a term/phenomenon
from <field name> that can take values in each of the given
ranges. Rules are: (i) the terms/phenomenon should be from
the same field, (ii) no two suggestions can be identical.” Note,
the <field name> can be arbitrarily chosen as long as the
feature names remain consistent with the prior knowledge of
the LLM (i.e., from the same domain) and have a similar range
of feasible values (<list of ranges>). Figure 1 illustrates an
example with the Magic Telescope dataset, where the LLM
replaces the generic attribute labels with terms from physics.

B. LLM Fine-tuning for Data Generation

While GReaT [5], by design, fine-tunes all LLM param-
eters, our study considers both regular fine-tuning as well
as parameter-efficient fine-tuning (PEFT) based on LoRA [6]
which is a technique for efficiently fine-tuning LLMs by
restricting updates to a low-rank subspace of the model’s
gradient space, allowing significant parameter adaptation with
minimal computational overhead.

C. Implementation

For this study, we used two LLMs, namely GPT-2 [8] and
DistilGPT-2 [9] and build upon the publicly released GReaT
codebase 1. Our implementation utilizes the Transformers [10]
and PEFT [11] libraries 2. We fine-tuned the LLMs using a
90-10 train-test split from all datasets, with training performed
on the real-train split. For fine-tuning DistilGPT-2, we used the
AdamW optimizer with learning rate 5e − 5 and trained for
400 epochs. For GPT-2, we used LoRA with learning rate set
to 5e− 5, r = 16 and α = 32.

TABLE I: Summary of datasets considered in this study.

Dataset Dataset Size Features Targets
HELOC Likelihood of loan repayment

[12]
10459 23

(classification)

Magic Gamma Telescope Class label – gamma ray or cosmic ray
[13]

19020 10
(classification)

California Housing Median house value
[14]

20640 8
(regression)

Parkinson’s Diagnosis Parkinson’s score
[15]

5875 19
(regression)

1https://github.com/kathrinse/be great
2https://github.com/huggingface/

TABLE II: Prediction performance of decision tree and ran-
dom forest models on four datasets. ML models are trained
on data generated by fine-tuning Distil-GPT2. Results demon-
strate that enriching prompts with relevant semantic context
yields a boost in performance.

Dataset Prompting Performance
(Metric) Protocol Decision Tree Random Forest

Magic Telescope
(Accuracy)

Baseline 80.57 82.94
Expert-guided 82.1 86.25
LLM-guided 80.6 83.81

HELOC
(Accuracy)

Baseline 69.12 70.65
Expert-guided 69.22 70.7
LLM-guided 69.36 70.27

Parkinsons Diagnosis
(MSE)

Baseline 11.15 10.2
Expert-guided 4.21 1.96
LLM-guided 3.52 1.84

California Housing
(MSE)

Baseline 0.5 0.35
Expert-guided 0.46 0.34
LLM-guided 0.48 0.34

IV. EXPERIMENTAL SETUP

Datasets. Table I summarizes the datasets used in this work.
Evaluation. To assess the quality of the synthetic data gen-
erated with our prompting strategies, we test how well pre-
dictive models trained solely on this data perform on real test
data. In prior work, this evaluation has been referred to as
machine learning efficiency (MLE) [5]. To estimate MLE,
we utilize two widely used ML models for tabular data –
random forests (RF) [16] and decision trees (DT) [17]. We
train these models using the sklearn [18] library and conduct
hyper-parameter tuning through grid-search with 5-fold cross-
validation. As evaluation metrics, we use the mean squared
error and accuracy scores for regression and classification
tasks respectively. MLE quantifies how well models trained
purely on the synthetic data can generalize to real unseen data,
thereby serving as an effective proxy for the quality of the
generated samples. Note, that we fine-tune LLMs with real-
train split and evaluate MLE on real-test split.

V. RESULTS AND FINDINGS

In this section, we perform a comprehensive evaluation of
the impact of the prompt construction methods on MLE. We
present our findings below
Finding 1: Leveraging semantic context in prompts boosts
LLM-based data generation.
Table II presents the MLE scores of models trained on syn-
thetic data generated using various prompting methods, after
fine-tuning all DistilGPT-2 parameters. For the Parkinsons
dataset, the LLM-guided prompts reduces prediction error
by up to 68% over the baseline and outperforms the manually
generated Expert-guided prompts by 16%.
Finding 2: Better prompts improve training efficiency.
Figure 2 provides insights into the training dynamics when
using the proposed prompting strategies on the Parkin-
son’s diagnosis dataset. Strikingly, with both LLM-guided
and Expert-guided prompts, the models surpass the MLE
while requiring < 25% of the Baseline training epochs.

On the Parkinson’s diagnosis dataset, the expert-guided and
LLM-guided approaches reduce the MSE by > 80% compared
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Fig. 2: Enhanced prompt construction strategies lead to better
computational efficiency.

to the Baseline encoding for both ML models. Enhanced
prompts do not provide significant performance gains on the
HELOC and California Housing datasets, which already con-
tain non-ambiguous and readily interpretable feature names.
Finding 3: Benefits continue to persist even with parameter-
efficient fine-tuning.
Figure 3 presents the MLE scores achieved by models trained
on synthetic data generated from the GPT-2 model fine-tuned
with LoRA.

Fig. 3: Performance of ML models trained on synthetic data,
generated by fine-tuning GPT-2 with LoRA using various
prompting methods, evaluated on the Magic Telescope and
Parkinson’s diagnosis datasets.

A striking observation is that the proposed prompting strate-
gies continue to outperform Baseline encoding even with
PEFT. For example, on the Parkinson’s diagnosis dataset,
the Expert-guided and LLM-guided prompts reduce
the MSE by 33.7% and 27.5%, respectively, compared to
Baseline prompting for the DT model. Furthermore, on the
Magic Telescope dataset, Expert-guided prompts achieve
a non-trivial accuracy boost of 3.99%.
Finding 4: When no context is available, Novel-Mapping
is highly effective.
In Figure 4, we present the downstream prediction
performance obtained with the Baseline and
the Novel-Mapping strategies. Notably, when dealing
with datasets containing non-decipherable names and
regression tasks, mapping those feature names to meaningful
ones from another domain that is consistent with the priors
of the pre-trained LLM provides benefits. For instance, in

the case of the Magic Telescope dataset, we observe an
accuracy improvement of 1.5% for the DT model. Similarly,
for Parkinson’s diagnosis, we observe substantial reductions
of >57% in MSE. We only compare the Novel-Mapping
strategy with Baseline as the LLM-guided method
would otherwise produce random descriptions and no expert
knowledge is available for that dataset.

Fig. 4: Mapping generic feature names to semantically mean-
ingful descriptors from a novel domain provides non-trivial
gains in performance.

VI. CONCLUSIONS

Our empirical results show that when the feature names in
tabular datasets do provide sufficient semantic context, the pro-
posed prompting strategies can substantially enhance the qual-
ity of the generated samples. Furthermore, these strategies also
exhibit improved computational efficiency. Interestingly, even
Novel-Mapping is a viable strategy in practice, particularly
when the dataset contains only generic attribute descriptors.
Additionally, we compute distance to closest record (DCR)
that has been used before [5] to ensure that the generated
data do not contain copy of real data points. Augmenting
real training data with these synthetic samples improved the
accuracy of the decision tree by 1. 1% in the Magic Telescope
dataset and by ∼ 3% for the Heloc dataset.

VII. LIMITATIONS

We highlight some of the limitations of our approach which
warrant further investigation. First, while we considered a
diverse set of datasets, we only focus on four of them, and
considering a more diverse range of datasets is required.
Second, we primarily assess the quality of the generated data
using the Machine Learning Efficiency (MLE) metric, which
need not capture all aspects of data quality. Finally, while
we propose the LLM-guided and Novel-Mapping strate-
gies to address the limitation of relying on human expertise
(Expert-guided approach), further research is needed to
validate their effectiveness across a wider range of scenarios.
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