
LLNL-CONF-705913

MetaKV: A Specialized
Key-Value Store for Distrbuted
Burst Buffer Systems

T. Wang, A. Moody, Y. Zhu, K. Sato, K. Mohror, T.
Islam, W. Yu

October 19, 2016

International Parallel & Distributed Processing Symposium
(IPDPS)
Orlando, FL, United States
May 29, 2016 through June 2, 2016

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

MetaKV: A Key-Value Store for Metadata
Management of Distributed Burst Buffers

Teng Wang† Adam Moody‡ Yue Zhu† Kathryn Mohror‡ Kento Sato‡ Tanzima Islam‡ Weikuan Yu†

†Florida State University ‡Lawrence Livermore National Laboratory
{twang, yzhu, yuw}@cs.fsu.edu {moody20, kathryn, kento, tanzima}@llnl.gov

Abstract—Distributed burst buffers are a promising storage
architecture for handling I/O workloads for exascale computing.
Their aggregate storage bandwidth grows linearly with system
node count. However, although scientific applications can achieve
scalable write bandwidth by having each process write to its
node-local burst buffer, metadata challenges remain formidable,
especially for files shared across many processes. This is due to the
need to track and organize file segments across the distributed
burst buffers in a global index. Because this global index can
be accessed concurrently by thousands or more processes in a
scientific application, the scalability of metadata management is
a severe performance-limiting factor.

In this paper, we propose MetaKV: a key-value store that
provides fast and scalable metadata management for HPC
metadata workloads on distributed burst buffers. MetaKV com-
plements the functionality of an existing key-value store with
specialized metadata services that efficiently handle bursty and
concurrent metadata workloads: compressed storage manage-
ment, supervised block clustering, and log-ring based collective
message reduction. Our experiments demonstrate that MetaKV
outperforms the state-of-the-art key-value stores by a significant
margin. It improves put and get metadata operations by as much
as 2.66× and 6.29×, respectively, and the benefits of MetaKV
increase with increasing metadata workload demand.

I. INTRODUCTION

Distributed burst buffers are being deployed as a storage
solution on many leadership-scale supercomputers [1], [4], [5],
[6], [14], Their aggregate storage bandwidth scales linearly
with compute node count. However, metadata operations over
distributed burst buffers can quickly become a performance
bottleneck. Typical HPC I/O workloads involve a large num-
ber (N) of processes accessing either N individual files (N-
N workload) or a single shared file (N-1 workload). Both
workloads have distinct metadata requirements. For N-N, the
requirements are simple: each process writes an individual
file to its node-local burst buffer, and the file metadata only
needs to be managed locally. In contrast, for N-1, all processes
concurrently write their segments of the shared file to their
node-local burst buffers, with the consequence that segments
of the shared file are distributed across burst buffers. Thus,
in order for processes to locate shared file segments on
subsequent accesses, we need a global index to track the
segment locations.

Scientific applications using an N-1 I/O pattern can generate
an enormous number of file segments in a single shared
file [8], [13], resulting in an unmanageably large global index.

Recently, several groups have researched using distributed key-
value stores to manage the metadata on HPC systems [10],
[16], [24], [28]. MDHIM [10] stands out as one of the few key-
value stores developed for HPC systems, with several features
that enhance its performance: it amortizes index workload over
multiple key-value servers; it is implemented with MPI, for
portability and leveraging native, high-speed transport layers;
and it uses LevelDB [3], a fast persistent key-value store,
to manage its key-value pairs and allow the pairs to be
quickly reconstructed after failure. However, the performance
of MDHIM is limited under bursty and concurrent metadata
workloads. Primarily, this is due to MDHIM lacking awareness
of the spatial and temporal locality of requests, resulting in a
large quantity of small metadata operations on the same file
(See Section II-B for details).

To address the limitations of metadata support for HPC N-1
workloads on distributed burst buffers, we developed MetaKV.
MetaKV is a key-value store layered on top of MDHIM and
improves on MDHIM’s performance with several enhance-
ments. MetaKV provides ordered index layout with fast writes
using a novel compressed storage management framework,
and reduces read service times via supervised read clustering.
Moreover, to address the problem of highly-concurrent file
attribute requests for shared files, it establishes a log-ring based
overlay network across the servers to optimize common all-
to-one and one-to-all communication patterns used for these
metadata operations on shared files.

We make the following main contributions as part of our
design, implementation, and evaluation of MetaKV.

• We introduce a novel compressed storage management
framework to reshape the index layout without incurring
frequent compaction operations.

• We design an efficient read clustering algorithm that
dynamically clusters requested indices and services get
requests, resulting in fewer and larger reads.

• We implement a log-ring based collective message re-
duction framework across key-value servers to optimize
common all-to-one and one-to-all operations for shared
file workloads.

• We evaluate MetaKV and show that it delivers fast
and scalable metadata service under various scientific
metadata workloads.

Overall, we show that MetaKV is a significant improvement

A0

Offset: 180

Location: (SSD0, Addr: 100)

Length: 20

A6
FID:101, Offset: 180

Location: (Log0, Addr: 100)

Size: 20

B1
Offset: 200

Location: (SSD1, Addr:
100)

Length: 20

A0Shared File
B7

FID:101, Offset: 200

Location: (Log1, Addr: 100)

Size: 20

FID:101 drwxr-xr-x;; 4M;; app2.ckpt
File Attribute

Indices

Offset

SSD0

P0

A0
A2

A6
A4

A
dd
r

A0 B1 A2 B3 A4 B5 A6 B7

Shared File

P1

Log0
B1
B3
B5
B7

SSD1

A
dd
r

Log1

Fig. 1: File Attribute and Index Metadata Types.

over the state-of-the-art for HPC I/O workloads. MetaKV
achieves as much as 2.66× and 6.29× performance improve-
ment for put and get metadata operations, and the benefits
of MetaKV are more pronounced for metadata workloads of
increasing scales.

II. BACKGROUND

In this section, we first present a high-level overview of
the metadata challenges for distributed burst buffers. Then we
elaborate on existing distributed key-value stores, and analyze
the issues surrounding their use.

A. Metadata Challenges on Distributed Burst Buffers

Two primary types of metadata needed for distributed burst
buffers are indices and file attributes, with an example of
each type shown in Fig. 1. In the example in the figure, two
processes concurrently write eight segments to a shared file.
The segments written by each process are laid out contiguously
in local log files (Log0 and Log1). Each segment has an
index entry in the index table, where the index entry maps
the logical offset of each segment in the shared file to a
physical location on SSD. For instance, segment B7 is at offset
200 of the shared file, and it is mapped to physical address
100 of Log1. In addition, the index entry also records other
important information, including segment size (20) and ID of
the shared file (101). The attributes of the shared file are stored
in the file attribute table, and include details such as file name,
permission, and file size.

Handling each type of metadata and associated requests
imposes distinct challenges. For file attribute metadata, the
challenge arises from many identical, concurrent requests for a
shared file. For example, if all processes concurrently create a
shared file, all the processes send the file attribute information
to the metadata server(s) at the same time. A similar situation
occurs when all processes concurrently request or update
metadata information, e.g., with a stat or close operation.

This file attribute metadata problem has been described in
several studies as a critical limiting factor of the system’s
scalability [24], [29], [32]. For the index metadata, the primary
challenge occurs due to numerous concurrent I/O requests.
Due to the nature of HPC I/O operations, shared file accesses
may generate many small, concurrent write and read requests,
followed by a large quantity of index operations to record
those operations on the metadata servers.

B. Key-Value Stores for Metadata of Distributed Burst Buffers

Recently, distributed key-value stores have been explored
as an alternative to improve metadata performance. These
distributed key-value stores typically split a key space into
numerous key ranges, and distribute these key ranges to all
the key-value servers. Each key-value server is responsible for
managing all the key-value pairs that fall in its own ranges.

In order to leverage key-value stores for metadata opera-
tions, the metadata has to be transformed into key-value pairs.
For index metadata, using our example from Fig.1, the key can
be a tuple (FID, Offset), and the value can be (LogID, Addr,
Size). With this key-value format, we can retrieve the physical
location (LogID, Addr) and the size of a segment based on
its logical location (FID, Offset) in the shared file. For file
attributes, we can use the FID as the key, and the value will
correspond to the file attributes (e.g. file name, size in Fig. 1).

As discussed in Section I, MDHIM is a state-of-the-art
key-value store for HPC systems. However, it suffers from
several performance issues that we seek to overcome with
MetaKV. Bursty write workloads often involve all processes
concurrently issuing write requests, resulting in a large number
of concurrent index put requests. These indices often have
strong spatial locality [8], [18], [33] meaning the indices for
contiguous segments of a file are written together to the same
key-value server. However, since the index put requests are
issued from multiple processes, when they arrive at MD-
HIM, the spatially contiguous indices are interleaved with
other indices for different locations, resulting in disordered
index layout. In order to recover the index layout, MDHIM
introduces extra compaction overhead that can significantly
prolong the index put time. Similarly, during a bursty read
workload, the contiguous index get requests are directed to the
same key-value servers and interleaved with other get requests.
MDHIM does not realize the spatial locality and issues a
separate read to retrieve each requested index, introducing
massive small and redundant read operations that restrict the
read performance. Moreover, concurrent file operations, e.g.,
open, stat or close, on the shared file often involve all the
clients simultaneously sending the attributes to the same key-
value server, and receiving the attributes from the same key-
value server. This all-to-one/one-to-all communication pattern
can present a serious hurdle to the system’s scalability at scale.

MDHIM relies on LevelDB to manage the key-value pairs.
Fig. 2 gives a high-level overview of how LevelDB manages
the indices. The received indices are first appended to a write-
ahead log (WAL), and also ordered in LevelDB’s write buffer
(MemTable) based on their keys. Once the MemTable is full,

(0-1)KB

(2-3KB)

(6-7)KB

(7-8)KB

(1-2)KB

(4-5KB)

(3-4)KB

(5-6)KB

(6-7)KB(4-5)KB

(0-1KB) (2-3)KB
(7-8)KB(5-6)KB

(1-2KB) (3-4)KB

Process 0 Process 1

(6-7)KB

(7-8)KB

MemTable
Files on SSD

(0-1KB) (1-2)KB (2-3)KB (3-4)KB (5-6)KB (6-7)KB (7-8)KB(4-5KB)

Indices

(6-7)KB

(7-8)KB

Immutable

MemTable

Range: (0-3KB) Range: (1-5KB) Range: (3-6KB) Range: (6-8KB)

Compact SSTable

WAL

Fig. 2: Example of Index Metadata in LevelDB.

11% 26%
47%

70%

84%

0

2

4

6

8

1 2 4 8 16

Ti
m

e
 (

s)

Number of Segments (Million)

IndexPut Total

(a) Put Overhead

46%
59%

71%

81%

87%

0

2

4

6

8

1 2 4 8 16

Ti
m

e
 (

s)

Number of Segments (Million)

IndexGet Total

(b) Get Overhead

Fig. 3: MDHIM Index Put and Get Overhead.

it is mirrored to a shadow write buffer as an immutable
MemTable. This immutable MemTable is then flushed to the
disk as an SSTable. LevelDB records the key range of each
SSTable for fast search (see Fig. 2). The key ranges of
different SSTables are often overlapping. This is because the
contiguous indices are issued by different processes (e.g. in
Fig. 2, (0-1)KB is from Process 0 and (1-2)KB is from Process
1). These contiguous indices arrive at the write buffer at a
different time; when the write buffer is full, they are flushed
to different SSTables, resulting in overlapping SSTables. When
an index on the overlapping SSTables is requested, LevelDB
has to go through multiple overlapping SSTables to search
this requested index. To avoid repeated search operations,
LevelDB intermittently compacts the overlapping SSTables
into non-overlapping ones. For instance, in Fig. 2, the ranges
of three SSTables are overlapping, so they are compacted
together. More details about the compaction and the hierarchy
of SSTables can be found in [22].

C. Motivating Study with MDHIM

To observe the potential issues of directly using MDHIM,
we performed a small motivating study. In our experiments,
we have 256 processes on 16 nodes concurrently write their
file segments to a 16 GB shared file distributed over 16 SSDs
following N-1 strided write, as depicted in Fig. 1 by P0 and P1.
These processes then read this file back in the same pattern.
We use MDHIM to store and query the indices of the file
segments. We vary the size of each write request from 16KB

to 1KB. This produces an increasing number of file segments,
ranging from 1 million to 16 million. Fig. 3a and Fig. 3b
reveal the metadata overhead for write and read, respectively.
Here, each process is able to write/read segments of the shared
file to/from the node-local burst buffer, delivering fast and
sequential writes/reads. However, as we can see from Fig. 3a,
the metadata put time is initially negligible, but it grows
sharply with the segment count and gradually dominates the
write time. This is counterintuitive since the size of index for
each segment is 40B, which is much smaller than the smallest
segment size (1KB).

After a detailed analysis, we find that a major reason for
the increasing put overhead is due to more frequent com-
paction operations incurred at larger segment counts. When
the segment index put operations are concurrently issued by
all the processes, the indices for different file segments arrive
at the MDHIM servers randomly. As a result, when these
indices are stored in LevelDB, the spatially contiguous indices
are separated into different SSTables (see Fig. 2), resulting
in many overlapping SSTables. As we increase the segment
count, more and more SSTables are generated, which results
in more frequent compaction operations.

We also observed the index get time accounts for a high
percentage of read time, and the ratio grows with segment
count in Fig. 3b. This high overhead for getting indices is
due to the growing number of random and redundant read
operations on each key-value server with increasing segment
count. Specifically, the read unit of LevelDB is a block (default
4KB). For each get, LevelDB loads the block containing the
requested index and sequentially iterates over the block indices
until it finds the target, resulting in numerous redundant seek
and read operations.

III. METAKV

In order to address the metadata challenges for distributed
burst buffers, we propose MetaKV, a specialized key-value
store on top of MDHIM to handle the management of in-
dices and file attribute workloads. As we have elaborated in
Section II-B, we have designed MetaKV to address several
key scalability problems: compaction overhead, read over-
head, and attribute handling overhead. MetaKV minimizes
the compaction overhead via a novel compressed storage
management framework for fast put. To eliminate the read
overhead, MetaKV uses supervised read clustering to cluster
the requested blocks into a few regions, and service the
requested indices within these regions with fewer and larger
read operations. Furthermore, in order to provide scalable
file attribute service for metadata operations on a shared file,
MetaKV employs log-ring based collective message reduction
by organizing all the key-value servers on top of a log-ring
overlay network and minimizing the number of messages
exchanged by a single key-value server.

A. Compressed Storage Management

As we found in our motivating study in Section II-C,
MDHIM suffers from the overhead of compaction, which is

Data Block3

Data Block2

Data Block1

Metadata Blocks

…

Write Buffer

To Compression
Buffer

Files on SSD

0.5-1.5

1.5-3

5-7

…
0-1 7-8.5

Merge &Flush

File 1

File 2

File (n)

…

Data Block3

Data Block2

Data Block1

Metadata Blocks

Min Key1 Min Key2 Min Key3

Address1 Address2 Address3

…

Indices
3-6BST(A) BST(B)

0.5-1.0 1.0-1.5

A.1 B.1
…

…

…

… … …

Fig. 4: Compressed Storage Management in MetaKV.

triggered when LevelDB merges overlapping SSTables into
non-overlapping ones. The overlap results from contiguous
indices being placed in different write buffers. Our approach
to addressing this issue is to devise a method to allow more
indices to be ordered in the write buffer, avoiding the need
for frequent flushing and compaction on SSD. At first glance,
an intuitive solution is to compress the MemTable after the
write buffer is full, and put the compressed MemTable into
the mirrored write buffer holding Immutable MemTable (See
Fig. 2). In this way, the same mirrored write buffer can
fit more MemTables. Once the write buffer is full, these
compressed MemTables are decompressed, and the ordered
indices in MemTables are merged and flushed to SSDs as
non-overlapping SSTables. With an efficient compression al-
gorithm, this MemTable-level compression can significantly
reduce the compaction operations on SSD by buffering more
indices in the write buffer. However, on further inspection, this
solution is not ideal. First, when the reader retrieves an index
from the compressed MemTable, the whole MemTable has
to be decompressed. The performance penalty for lookup in
compressed MemTable is prohibitively high. Second, once the
write buffer is full, decompressing and merging the MemTa-
bles incurs very high memory consumption, as much as the
total size of all the decompressed MemTables.

Our solution to avoid compaction overhead in MetaKV is
block-level compression, as shown in Fig. 4. After the write
buffer is full, all the ordered indices are clustered into fixed-
size blocks (by default 4KB), then compressed and flushed to
the compression buffer as compressed blocks. To facilitate fast
lookup, these compressed blocks are ordered on a balanced
binary search tree (BST) based on their key ranges. For
instance, in Fig. 4, BST(A) contains 3 compressed blocks, and
each block has a distinct key range that records the minimum
key and maximum key of the indices in this block. These
blocks are ordered as three tree nodes on BST(A) based on
the minimum keys, i.e. 0.5, 1.5, and 5. The compressed blocks
from different MemTables are organized separately in the
compression buffer. For example, in Fig. 4, the compressed
MemTable A and compressed MemTable B are organized
separately in the compression buffer as BST(A) and BST(B),
respectively. Once the compressed buffer is full, a 2-way
merge is triggered on the two BSTs only with the overlapping

60-6452-56

44-4836-40
56-6048-52

40-4432-36

Disordered Data Layout

24-2816-20

0-4 8-12

28-3220-24

4-8 12-16

FID Offset LogID Addr Size

0 0 0 0 4

0 4 1 0 4

0 8 0 4 4

0 12 1 4 4

0 32 0 16 4

0 36 1 16 4

0 40 0 20 4

0 44 1 20 4

Process 0 Process 1

FID Offset LogID Addr Size

0 16 0 8 4

0 20 1 8 4

0 24 0 12 4

0 28 1 12 4

0 48 0 24 4

0 52 1 24 4

0 56 0 28 4

0 60 1 28 4

Fig. 5: Indices from Fixed-Stride Writes in Key-Value Servers.

blocks. In Fig. 4, compressed block A.1 and compressed
block B.1 have overlapping key ranges, so they are merged
into two non-overlapping blocks with ranges (0.5-1) and (1-
1.5), respectively. Along with this merge operation, all the
compressed blocks in BST(A) and BST(B) are flushed to SSD
based on the order of their minimum keys.

Compared with the intuitive MemTable-level compression
described earlier, our block-level compression has two ben-
efits. First, when a get request falls into the compression
buffer, instead of decompressing the whole MemTable, only
the block holding that index is decompressed, which avoids
the heavy performance penalty. Second, merging operations
are only performed on overlapping blocks. This significantly
reduces memory consumption and decompression overhead.

The bottom of Fig 4 shows how data are organized on SSD.
Like LevelDB, each file on SSD is composed of multiple
blocks (by default 256). A metadata region with one or
multiple metadata blocks is attached to the end of each file to
keep track of the key range of each block for binary search. An
important consideration for this design is the selection of com-
pression algorithm. Specifically, since MetaKV relies on the
compression algorithm to cluster together contiguous indices,
the compression algorithm should deliver both high compres-
sion ratio and fast compression/decompression speed. MetaKV
captures the fact that most of the scientific workloads have
their processes concurrently write/read structured data. The
indices of these structured data follow regular patterns [13].
When the spatially contiguous indices are distributed to the
same key-value server in MetaKV, these indices also follow
regular patterns. Fig. 5 gives an example of a typical fixed-
stride pattern (e.g., the write pattern of P0 and P1 exhibited
in Fig. 1 with fixed segment size of A and B), when multiple
processes concurrently access a region of a regular multi-
dimensional array (e.g., odd columns of a 2-D matrix). In
the example of Fig. 5, two processes issue interleaved writes
to the shared file with fixed stride. The indices for these
writes are distributed to two key-value servers. As we can
see from the table in Fig. 5, the elements of each column vary
regularly. We can reduce the storage overhead by recording

Biri-1(3)ri-1(1) ri-1(2)ri-1(0)

.

. . .
.
.
. .

. . . .

Clustered
Regions

Blocks

File

r(i-1) r(i)
B0 Bi-1

R1 R3 R4 R5 R6Clustered
Regions

R2

Fig. 6: Supervised Block Clustering

the initial value and the deltas between consecutive values.
We use the LZZ [34] algorithm to compress every column of
these indices in each block and store each compressed column
in a contiguous region of the block. LZ77 has been previously
shown to be an efficient compression algorithm that identifies
the regularly varying sequence of deltas [13].

B. Supervised Block Clustering

As we describe in Section II-B, LevelDB issues a block read
for each requested index, and iterates over all the items until
it finds that index. When multiple indices fall on the same
block, the performance suffers from a number of redundant
seek and read operations. MetaKV addresses this issue using
supervised block clustering. It identifies the temporarily hot
regions in the on-disk files and clusters together all the blocks
in these file regions, so that all the queued read requests in
the same region can be serviced in one large read.

A key issue for block clustering is how to dynamically
identify the hot regions. We introduce locality factor (LF),
defined as Equation 1.

LF(f irst, last) =
∑

last
i= f irst requested[i]

last− f irst +1
(1)

In this equation, f irst and last are the indices of the first
and last blocks of a region in the file; requested[i] is set to
1 if the i-th block contains the requested indices. A high
LF value means a large percentage of blocks in the file
region contain the requested indices (we refer to these blocks
as requested blocks), and the few intermittent non-requested
blocks are likely to be requested later. For example, in Fig. 6,
ten contiguous blocks are clustered into Region 3 (R3), and
the requested indices (points inside the block) fall into eight
requested blocks. The two non-requested blocks (blank) in
the middle are likely to be requested later. According to the
definition of LF , LF of R3 is 80%.

MetaKV decides a region as hot when LF is equal to
or larger than a threshold α (default 80%). The purpose of
supervised clustering is to cluster the contiguous blocks in the
file into a minimum number of hot regions under the constraint
(LF(f irst, last)≥α), where f irst and last are the index of the
first and last block of each region. In this way, all the read
requests can be satisfied in a few large reads on these regions.

We consider two approaches to resolve the aforementioned
optimization problem. As a brute force approach, we can
recursively search all the combinations of contiguous blocks in
the file and calculate their LF . However, this has exponential
complexity. Alternatively, we can apply existing clustering
algorithms, such as K-means clustering [12], to cluster the
blocks into K regions in each round and iterate n rounds for
all the possible K values (1≤ K ≤ n), where n is the number
of blocks containing the read requests. The complexity for this
solution is O(n3t), where t is the number of iterations until
convergence for each K value.

To avoid the heavy computation associated with these
approaches, we solve this problem more efficiently based on
dynamic programming. We define Bi as the i-th requested
block along the file, where i in Bi only applies to requested
block. In this optimization problem, we can derive the clus-
tered regions on the file extent that spans from B0 to Bi
(e.g. r(i) in Fig. 6) based on the clustered regions on the file
extent spanning from the B0 to Bi−1 (e.g., r(i-1) in Fig. 6),
by reversely iterating over the clustered regions of r(i−1) to
check if these regions can be combined with their followed
regions into a larger region. In Fig. 6, r(i− 1) contains four
clustered regions: ri−1(0), ri−1(1), ri−1(2) and ri−1(3). These
four clustered regions in r(i− 1) are searched in the order
of ri−1(3), ri−1(2), ri−1(1) to judge if they can be combined
into one region once Bi joins as a new element. At the
threshold α of 80%, ri−1(3) is firstly combined with Bi as
a new region {ri−1(3),B(i)}, since LF of {ri−1(3),B(i)} is
100%. {ri−1(3),B(i)} is further combined with ri−1(2) to
form a larger region since LF of {ri−1(2),ri−1(3),B(i)} is
80%. The operation stops at ri−1(1) since LF of the com-
bined region {ri−1(1),ri−1(2),ri−1(3),B(i)} is smaller than
α. So the new clustered regions of r(i) contains 3 regions:
{ri−1(2),ri−1(3),B(i)}, ri−1(1) and ri−1(0). Following this
rule, we can iteratively derive the solution for the whole file.

The detailed algorithm is listed in Algorithm 1. Line 3
initializes the region set (R) with B0. Lines 4–15 iteratively
calculate the region set for the file range that ends at Bi,
until the whole file range is covered at Bn. The region set
R in each iteration is derived from the resultant R in the
previous iteration. In each iteration, the regions in R are
iterated reversely starting from RR.count − 1 (Lines 5–15).
Along the iteration, LF of the region spanning from R j to
Bi is continuously calculated, until LF is below α at some
point j (Lines 8–9). The regions between R j+1 and Bi are then
combined into one region as a new region in R (Lines 10–15).
Using dynamic programming, the problem can be solved in
O(mn), where n is the number of requested blocks in the file,
m is the average number of clustered regions in each iteration.
To control the clustering frequency, MetaKV monitors the total
request count on the file and classifies the request count into
n/1000 levels. It performs request clustering once the request
count reaches a different level.

When the blocks are clustered into regions, a remaining
issue is which region should MetaKV prioritize for service.
MetaKV selects the next region for service based on the

Algorithm 1: Supervised Clustering
Input: n: the number of requested blocks in the file ;

B: the list of all the requested blocks ;
Output: R: the list of clustered regions

1 begin
2 if n≥ 1 then
3 R← B0
4 for i ← 1...n-1 do
5 for j ← R.count-1...0 do
6 calculate LF o f the region spanning
7 f rom R j to Bi
8 if LF<α then
9 break

10 if j+1 == R.count then
11 R← R∪Bi

12 else
13 R← R \ R j+1 \ R j+2, ..., \ RR.count−1
14 C← R j+1∪R j+2∪, ...,∪RR.count−1∪Bi
15 R← R∪C

16 else
17 R← /0

request density (RD), defined in Equation 2, where f irst and
last are the indices of the first and last blocks in this region,
and count[i] is the number of queued requests in i-th block.

RD(f irst, last) =
∑

last
i= f irst count[i]

last− f irst +1
(2)

A region with high RD means reading this region is efficient
since loading each block in this region can satisfy a large
number of read requests. In making scheduling decision,
MetaKV selects the regions with the highest RD. Prioritizing
regions with high RD allows other less loaded regions to
accumulate more read requests for higher read efficiency.

C. Log-Ring Based Collective Message Reduction

As we described in Section II-A, a typical N-1 meta-
data workload involves all participating clients concurrently
sending and receiving file attribute requests to and from the
same key-value server, resulting in all-to-one and one-to-all
communication patterns, a key factor that limits the metadata
scalability.

MetaKV addresses this issue using log-ring based collective
message reduction. Here, all servers collectively forward and
reduce metadata messages to the same key-value server via
two-level reductions: client-server reduction and server-server
reduction. Fig. 7(a) uses an example to show our approach.
Eight servers are organized on the tree structure to collectively
reduce the number of messages sent to Server 0. Each server
delegates the attribute requests and acknowledgements (ACKs)
for a distinct set of clients. Once a server receives attribute
requests from all its clients, it performs a reduction on the

0

1

2

3

4

5

6

7

0

4 7 6

3 5

1

2

3

Size=5 Size=9

Size=9

(a) Spanning Tree from
Log-Ring

(b) Log-Ring

Fig. 7: Log-Ring Based Collective Message Reduction

clients’ requests (e.g., Server 3 in Fig. 7 reduces 2 clients), and
then forwards the metadata requests to the next hop. Fig. 7(a)
depicts a scenario when all the processes concurrently send
the file attributes of a shared file after checkpointing and the
resulting size attribute of the file is the largest size among all
clients’ requests. Both Server 3 and Server 5 take Server 7 as
the next hop and send the file sizes to Server 7. After receiving
the size information, Server 7 only forwards the larger request
to the root (Server 0). In this way, Server 0 determines the
final file size from the messages of only 3 Servers (4, 7, and
6). Server 0 then broadcasts the ACKs reversely along the tree
to all the servers, which will forward the ACK to their clients.
In this way, Server 0 only needs to send 3 ACKs and all the
broadcast operations are conducted in parallel.

A key consideration is how to build a spanning tree for each
server that takes this server as the root. In particular, to ensure
scalability, an efficient tree topology should allow any server
to forward a message to the target server in O(log(n)) hops.
Additionally, the fan-in and fan-out of the root node should
be O(log(n)); otherwise, the root has to send to/receive from
n−1 servers in an all-to-one/one-to-all communication pattern.
Most existing key-value stores use point-to-point messages
for communication. With all servers being connected as a
complete graph, this spanning tree has n− 1 fan-in and fan-
out. This large fan-in/fan-out allows each server to reach the
destination in one hop, which is appropriate for point-to-
point communication. However, the large fan-in/fan-out is a
scalability issue for all-to-one and one-to-all communication,
since the number of messages sent/received by each root on
the spanning tree is n−1.

Our solution for scalable file attribute handling is based on
a log-ring topology [7] shown in Fig. 7(b). The fan-in and fan-
out of each node in the ring is O(log(n)), meaning each server
can directly send to/receive from O(log(n)) other servers. For
instance, in Fig. 7(b), 0 can directly send to 1, 2, and 4, and
receive from 4, 6 and 7. This feature ensures the number of
send/receive operations is O(log(n)) at scale. In addition, each
message can be routed to the destination server in a maximum
of O(log(n)) hops. For example, in Fig. 7(b), the message from
Server 1 is routed to Server 0 along the path 1−5−7−0. This
path is aligned with the path from 1 to 0 on the spanning tree
in Fig. 7(a).

With a log-ring based spanning tree, we can calculate the

path from any Server i to Server j along j’s spanning tree. The
path is derived from simple bit operations using the distance
between two servers. The distance is defined as Equation 3.

Distance(i, j) = (j− i+ size)%size (3)

In Equation 3, size is the total number of servers on the ring.
Using the example in Fig. 7(b), Distance(1,0) is calculated
as 7. With this distance, the path is further derived from the
binary sequence of the distance, i.e., 7 = (111)2 = 22 + 21 +
20, where 22, 21, and 20 represent the distances between two
neighboring hops along the path. In this example, Server 1
can reach Server 0 via path 1+ 22 = 5, 1+ 22 + 21 = 7, 1+
22 +21 +20 = 0, respectively, which is exactly the path along
the spanning tree.

IV. EXPERIMENTAL EVALUATION

We evaluate MetaKV in several ways. First, we compare the
ability of MetaKV to handle concurrent index workloads in
comparison with other state-of-the-art key-value stores. Next,
we evaluate the performance of MetaKV index management
against the baseline performance of MDHIM using HPC I/O
benchmark workloads. Finally, we measure MetaKV’s ability
to handle concurrent file attribute requests using log-ring
collective message reduction.

A. Experimental Setup

Here, we briefly describe our experimental setup, including
compute system, key-value stores used for comparison, and
HPC I/O benchmarks used for performance evaluation.

Compute System: We evaluate MetaKV on Catalyst [2],
a 384-node Linux cluster at Lawrence Livermore National
Laboratory. Each compute node has two 12-core Intel Xeon
E5-2695v2 processors, 128 GB DRAM, 800 GB of PCI-e
SSD, and two InfiniBand QDR Qlogic network cards.

Key-Value Stores: We compare MetaKV to several key-
values stores as a baseline. First, we use MemcacheDB, a key-
value store that is a derivative of Memached [20] that provides
reliable cache service based on BerkeleyDB [21]. We also
compare against two MDHIM configurations: MD-MySQL
and MD-LevelDB, which refer to MDHIM using MySQL and
LevelDB as local key-value stores, respectively. MetaKV uses
its local storage management for put and get as described in
Sections III-A and III-B.

Benchmarks: We evaluate MetaKV’s metadata service
based on three widely adopted parallel I/O benchmarks:
IOR [26], MPI-Tile-IO [25], and BTIO [30]. IOR is a synthetic
benchmark that emulates HPC I/O patterns. We focus on N-
1 fixed-stride I/O, a typical I/O pattern exposed by scientific
applications that utilize one-dimensional partitioning (where
each process writes/reads a column of a 2-D matrix). MPI-
Tile-IO simulates processes concurrently accessing a two-
dimensional dense data set, utilizing 2-D partitioning, where
each process writes/reads a tile of the data set. BTIO tests
the output capability of the NAS BT (Block Tri-diagonal)
parallel benchmark. Its global data set is partitioned using

0.01

0.1

1

10

100

1000

Put Get

Ti
m

e
 (

s)

MetaKV
MD-LevelDB
MD-MySQL
MemcacheDB

Fig. 8: MetaKV Performance vs. Existing Key-Value Stores.

3-D triagonal partitioning, where each process writes/reads
multiple small 3-D regions.

In all the three workloads, each client process writes its
segments of a shared file to its local SSD, and then reads the
file back using the same I/O pattern. After each bursty write
phase, processes concurrently issue put requests for the file
segment indices to MetaKV. Before each bursty read phase,
all processes simultaneously get the indices for their requested
file segments. Each client records its total put and get time for
indices. The longest put and get time among all clients is
collected. Each test is run 10 times. The average from the 10
collected results is plotted in the figures.

Unless explicitly stated, we run 16 clients on each node to
make the total client count a power of 2. This configuration
balances the number of clients per server as we scale the log
ring. By default, we launch one MetaKV server as a service
thread in the first client process on each node.

B. Comparison with Contemporary Key-Value Stores

We first compare MetaKV against the contemporary key-
value stores to evaluate their handling of bursty index requests.
We launch 16 client processes and one key-value server on a
single node, and stress the key-value stores by having all client
processes concurrently issue interleaved writes to a shared
1GB file, and then read the shared file using the same pattern.
The transfer size is configured as 1KB, which results in 1
million (1GB/1KB) index puts/gets on the key-value server.

Fig. 8 compares the performance of the key-value stores.
We see that both MD-LevelDB and MetaKV perform better
than other key-value stores for put. The poor put performance
for MySQL results from each put request going through the
MySQL daemon, leading to substantial inter-process com-
munication overhead. The worst performance is with Mem-
cacheDB, because MemcacheDB is designed for reliable cache
service. It periodically checkpoints the in-memory data for
data persistence, and much more data are checkpointed than
actually received. In contrast, both MetaKV and MD-LevelDB
use write-ahead logging for data persistence and they do not
use a daemon for key-value service. Thus, they deliver the
best put performance. MemcacheDB performs well for get
operations because it retrieves indices directly from DRAM
via the cache service.

Overall, MetaKV and MD-LevelDB deliver both faster and
more balanced put/get performance compared with the other
key-value stores. In addition, it is critical that their data
persistence support be implemented without heavy impact on

0.01

0.1

1

10

2 4 8 16 32 64

Ti
m

e
 (

s)

Number of Requests (Million)

MetaKV MDHIM

(a) Put Performance

0.01

0.1

1

10

100

2 4 8 16 32 64

Ti
m

e
 (

s)

Number of Requests (Million)

MetaKV MDHIM

(b) Get Performance

Fig. 9: Index Put and Get Overhead with IOR.

put performance, since bursty writes are common in HPC
applications [11], and index put falls on the critical path of
write operations. Due to these benefits, in the rest of this
paper, we focus on the comparison between MetaKV and MD-
LevelDB (referred to as simply MDHIM in the rest).

C. MetaKV Performance with IOR

We evaluate MetaKV’s ability in handling N-1 fixed-stride
indices of IOR. We stress the servers using index puts and gets
of 1024 processes writing/reading a 64GB shared file to/from
node-local burst buffers. We vary the write and read request
sizes from 32KB to 1KB, which results in 2 to 64 million
put/get requests to the key-value servers.

Fig. 9a compares the put performance of MetaKV and
MDHIM. The put time of both MetaKV and MDHIM is
comparable at small request counts. However, as we increase
the number of requests, MetaKV gradually outperforms MD-
HIM and the gap becomes larger with increasing request
count. This is because the increasing number of requests
triggers more frequent compaction operations in MDHIM.
MetaKV addresses this issue using the technique described in
Section III-A: instead of frequently flushing indices to SSD,
it orders and compresses indices in memory as fine-grained
compressed blocks. In this way, more indices are ordered
in memory without going through the external compaction
operations. On average, MetaKV delivers 1.83× performance
improvement over MDHIM.

We show the get performance of MetaKV and MDHIM in
Fig. 9b. The performance of MetaKV exhibits greater benefit
with a larger request count. This is because the large number of
read requests incurs heavy redundant seek and read operations.
Instead, MetaKV clusters the spatially contiguous requested
blocks into large regions, and services all the get requests in
each region with fewer and larger reads, substantially reducing
this redundant read overhead. On average, MetaKV delivers
3.17× performance improvement over MDHIM.

D. MetaKV Performance with MPI-Tile-IO

We evaluate the weak scalability of MetaKV under the index
workloads of MPI-Tile-IO. We fix the dimensionality of the
tile produced by each process as 4096×32768, the number of
tiles along Y axis as 16, and increase the number of the tiles
along the X axis from 1 to 64. This results in a range of 16
to 1024 client processes and 1 to 64 servers. Correspondingly,

0

1

2

3

4

5

16 32 64 128 512 256 1024

Ti
m

e
 (

s)

Number of Clients

MetaKV MDHIM

(a) Put Performance

0

2

4

6

8

16 32 64 128 256 512 1024

Ti
m

e
 (

s)

Number of Clients

MetaKV MDHIM

(b) Get Performance

Fig. 10: Index Put and Get Performance with MPI-Tile-IO.

0

1

2

3

4

5

C D E

Ti
m

e
 (

s)

Problem Size

MetaKV MDHIM

(a) Put Performance

0

2

4

6

8

10

C D E

Ti
m

e
 (

s)

Problem Size

MetaKV MDHIM

(b) Get Performance

Fig. 11: Index Put and Get Overhead with BTIO.

the number of index put and get operations increase from 0.5
million to 32 million.

Fig. 10a compares the put performance of MetaKV and
MDHIM. Although the put time of both MetaKV and MDHIM
increases with more processes, the put time of MDHIM grows
more rapidly. This is because with a larger process count, each
MDHIM server receives batched put operations from more
processes, resulting in more put operations in LevelDB. These
intermittent put operations interfere with the LevelDB’s com-
pactions, further delaying the put time. In contrast, MetaKV
compresses batched put operations inside the write buffer to
avoid frequent compactions on SSD, hence better performance.
We observed that get time of MetaKV grows with client count
in Fig. 10b. This is because the requests arriving from a larger
number of clients incur heavier sending and packing overhead
to transfer the requested data back to every client. On average,
MetaKV delivers 2.66× and 5.22× performance improvement
over MDHIM, respectively for put and get.

E. MetaKV Performance with BTIO

We evaluate MetaKV’s ability in handling BTIO indices
using problem sizes C, D, and E. We use 64, 144, and 400
clients to write and read data respectively for C, D, and E
problem sizes, resulting in 0.2 million, 2.0 million, and 20.8
million put/get operations, respectively.

Fig. 11a shows the put performance. MetaKV achieves
1.1×, 1.9×, and 2.5× better performance than MDHIM for
problem sizes C, D, and E, respectively. The larger perfor-
mance benefit with greater problem size is because MetaKV
efficiently reduces the compaction overhead that MDHIM
incurs.

In Fig. 11b we show the get performance for BTIO. Be-
cause MetaKV eliminates redundant read operations via read
clustering, It delivers 1.7× and 3.75×, and 6.29× performance

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

64 128 256 512 1024

Ti
m

e
 (

s)

Number of Servers

MetaKV-Ring MetaKV-Direct
MDHIM

Fig. 12: Performance of Log-Ring Based Collective Messaging

improvement for get operations, respectively for problem sizes
C, D, and E.

F. Performance of Log-Ring Based Collective Message Reduc-
tion

To assess the benefit of MetaKV in handling the file attribute
workload for shared files, we launch 1024 client processes
across 64 compute nodes. These clients concurrently send
the attributes of a shared file to the same key-value server,
which then broadcasts the attributes to all clients after having
received the metadata. For MetaKV, we launch 1 to 16 servers
on each compute node as the delegators for the clients on the
same node. While we are aware that launching 1 delegator
can deliver the best performance since it reduces the metadata
requests on each node from 16 to 1, we choose to vary
the server count to show the benefit of server-side collective
optimization (MetaKV-Ring in Fig. 12) over the non-collective
solution (MetaKV-Direct in Fig. 12) with different server
counts. This helps us assess the scaling performance of log-
ring based collective message reduction.

Fig. 12 compares the performance of MetaKV-LogRing,
MetaKV-Direct, and MDHIM. In MDHIM, each client directly
sends a message to the same server. This server then sends the
attribute back to every client. In MetaKV-Direct, after each
client sends the attributes to the delegating server collocated
with the client on the same node, this server reduces the
attributes to one, and forwards it to the target server. The target
then broadcasts the attribute to all the delegators. In MetaKV-
LogRing, after clients send the attributes to the delegators, the
delegators collectively forward and reduce the attribute along
the spanning tree until the attributes reach the target server.
After that, the target server broadcasts the file attributes to all
the clients following a reverse path along the spanning tree.
As shown by Fig. 12, both MetaKV-LogRing and MetaKV-
Direct outperform MDHIM since client-side messages are
reduced by the delegators. On the other hand, MetaKV-
LogRing delivers lower latency at a large server count (e.g.,
from 256 to 1024) compared with MetaKV-Direct. This is
because without the collective reduction, the target server has
to receive/send attributes from/to all the n−1 servers. Instead,
with MetaKV-LogRing, all the servers perform reduction along
the ring, so the number of send/receive operations are reduced
to O(log(n)).

V. RELATED WORK

Data indexing is a technique widely used to manage scien-
tific data. For instance, ADIOS [19], NetCDF [15], HDF5 [27],
and the future I/O stack of DAOS [17] manage indices of
scientific data for fast data query. Their indices define a multi-
dimensional region in an array. For N-1 workload, their indices
are stored in a metadata section of the shared file. In order
to read data, all processes need to load the metadata section
into their memory. In contrast, the index format of MetaKV
is based on POSIX, which is similar to PLFS index [8]. Each
index defines a range of one-dimensional file. Though different
in the format, we believe the idea of MetaKV can be ported
to accelerate these high-level I/O libraries. DataSpaces [9]
provides a distributed indexing service for multi-dimensional
data. However, its index service is designed as part of its data
service, and the indices are in the distributed DRAM space.
Different from DataSpaces, MetaKV is designed for metadata
management on node-local burst buffers. It provides a separate
metadata service independent of data service.

Several state-of-the-art techniques have been proposed to
reduce the overhead associated with managing a large number
of indices. Wu et al. developed FastBit [31] to compress
indices for structured scientific data, and to support fast
queries on these compressed indices. It has been used in many
existing I/O libraries (e.g., HDF5 and ADIOS). He et al. [13]
proposed a technique to compress PLFS indices based on
pattern detection. Both of these works efficiently exploit the
compressibility of indices for structured scientific data. How-
ever, under parallel workloads, the indices of scientific data are
distributed. One process has to gather the indices from all other
processes, and construct the global index for compression.
Index gathering can become the bottleneck. MDHIM [10] is
designed to manage the PLFS indices and the indices for multi-
dimensional data. It distributes the index service over multiple
key-value servers. However, its performance is dependent on
its local key-value store, which is not optimized for the bursty
HPC metadata workloads. MetaKV inherits both the benefits
of index compression and distributed key-value service of
the aforementioned works. In addition, MetaKV complements
these solutions with clustered read service for bursty index
workloads.

Many solutions have been proposed to amortize the over-
head of the concurrent metadata requests on file systems [23],
[24], [29]. Their common strategy is to distribute metadata
for different files or directories over distinct metadata servers.
However, this strategy does not address the problem of
concurrent metadata requests on the same shared file. Our
approach differs because MetaKV is optimized to manage
the requests for shared files using log-ring based collective
message reduction.

VI. CONCLUSION

In this paper, we have examined various metadata re-
quirements on the distributed burst buffer systems, a critical
storage architecture for the next-generation supercomputers.
We have also analyzed the challenges in managing these

metadata for scalable I/O service. In particular, when a massive
number of processes concurrently operate on a shared file, the
performance of a burst buffer system can be handicapped by
large indexing overhead and the vast number of all-to-one/one-
to-all metadata operations.

To overcome these challenges, we have proposed MetaKV,
a distributed key-value store that delivers fast and scalable
metadata services for distributed burst buffer systems. While
inheriting many good virtues of existing key-value stores, it
is designed with compressed storage management, supervised
clustering, and log-ring based collective message reduction
to vastly reduce the metadata service time on index put/get
operations, and optimize the all-to-one/one-to-all metadata
operations. Our evaluation demonstrates that, compared with
the state-of-the-art key-value stores, MetaKV can improve
index put and get operations by as much as 2.66× and 6.29×,
respectively. It also delivers 5.7× performance improvement
in handling the all-to-one/one-to-all metadata operations.

Acknowledgments
This work was supported in part by a research grant from
Lawrence Livermore National Laboratory to Florida State
University. This work was also under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. LLNL-CONF-
705913.

REFERENCES

[1] Aurora. http://aurora.alcf.anl.gov/.
[2] Catalyst. http://computation.llnl.gov/computers/catalyst.
[3] LevelDB. https://github.com/google/leveldb.
[4] Summit. https://www.olcf.ornl.gov/summit/.
[5] Theta. https://www.alcf.anl.gov/articles/

alcf-selects-projects-theta-early-science-program.
[6] TSUBAME2. http://tsubame.gsic.titech.ac.jp/en/hardware-architecture.
[7] T. Angskun, G. Bosilca, and J. Dongarra. Binomial Graph: A Scalable

and Fault-Tolerant Logical Network Topology. In International Sym-
posium on Parallel and Distributed Processing and Applications, pages
471–482. Springer, 2007.

[8] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate. PLFS: A Checkpoint Filesystem for Parallel
Applications. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, page 21. ACM, 2009.

[9] C. Docan, M. Parashar, and S. Klasky. Dataspaces: an Interaction and
Coordination Framework for Coupled Simulation Workflows. Cluster
Computing, 15(2):163–181, 2012.

[10] H. N. Greenberg, J. Bent, and G. Grider. MDHIM: A Parallel Key/Value
Framework for HPC. In HotStorage. USENIX Association, 2015.

[11] R. Gunasekaran, S. Oral, J. Hill, R. Miller, F. Wang, and D. Leverman.
Comparative I/O Workload Characterization of Two Leadership Class
Storage Clusters. In Proceedings of the 10th Parallel Data Storage
Workshop, pages 31–36. ACM, 2015.

[12] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A K-Means
Clustering Algorithm. Journal of the Royal Statistical Society. Series
C (Applied Statistics), 28(1):100–108, 1979.

[13] J. He, J. Bent, A. Torres, G. Grider, G. Gibson, C. Maltzahn, and X.-
H. Sun. I/O Acceleration with Pattern Detection. In Proceedings of
the 22nd International Symposium on High-Performance Parallel and
Distributed Computing, pages 25–36. ACM, 2013.

[14] J. He, A. Jagatheesan, S. Gupta, J. Bennett, and A. Snavely. DASH: a
Recipe for a Flash-Based Data Intensive Supercomputer. In Proceedings
of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–11. IEEE Com-
puter Society, 2010.

[15] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale. Parallel NetCDF:
A High-Performance Scientific I/O Interface. In Supercomputing, 2003
ACM/IEEE Conference, pages 39–39. IEEE, 2003.

[16] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran,
Z. Zhang, and I. Raicu. ZHT: A Light-Weight Reliable Persistent
Dynamic Scalable Zero-Hop Distributed Hash Table. In Parallel & Dis-
tributed Processing (IPDPS), 2013 IEEE 27th International Symposium
on, pages 775–787. IEEE, 2013.

[17] J. Lofstead, I. Jimenez, C. Maltzahn, Q. Koziol, J. Bent, and E. Barton.
DAOS and Friends: a Proposal for an Exascale Storage System. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 50. IEEE Press,
2016.

[18] J. Lofstead, M. Polte, G. Gibson, S. Klasky, K. Schwan, R. Oldfield,
M. Wolf, and Q. Liu. Six Degrees of Scientific Data: Reading Patterns
for Extreme Scale Science IO. In Proceedings of the 20th International
Symposium on High Performance Distributed Computing, pages 49–60.
ACM, 2011.

[19] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, Metadata
Rich IO Methods for Portable High Performance IO. In Parallel & Dis-
tributed Processing, 2009. IPDPS 2009. IEEE International Symposium
on, pages 1–10. IEEE, 2009.

[20] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, et al. Scaling Memcache
at Facebook. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages 385–
398, 2013.

[21] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In Proceedings of
the Annual Conference on USENIX Annual Technical Conference, ATEC
’99, pages 43–43, Berkeley, CA, USA, 1999. USENIX Association.

[22] P. ONeil, E. Cheng, D. Gawlick, and E. ONeil. The Log-Structured
Merge-Tree (LSM-Tree). Acta Informatica, 33(4):351–385, 1996.

[23] S. V. Patil, G. A. Gibson, S. Lang, and M. Polte. Giga+: Scalable
Directories for Shared File Systems. In Proceedings of the 2nd
International Workshop on Petascale Data Storage: held in conjunction
with Supercomputing’07, pages 26–29. ACM, 2007.

[24] K. Ren, Q. Zheng, S. Patil, and G. Gibson. IndexFS: Scaling File Sys-
tem Metadata Performance with Stateless Caching and Bulk Insertion.
In SC14: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 237–248. IEEE, 2014.

[25] R. B. Ross. Parallel I/O Benchmark Consortium.
[26] H. Shan and J. Shalf. Using IOR to Analyze the I/O Performance for

HPC Platforms. Lawrence Berkeley National Laboratory, 2007.
[27] The HDF Group. Hierarchical data format version 5, 2000-2010.
[28] T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu. An Ephemeral

Burst Buffer File System for Scientific Applications. In Proceedings of
the Conference on High Performance Computing Networking, Storage
and Analysis, page 21. ACM, 2009.

[29] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller. Dynamic
Metadata Management for Petabyte-Scale File Systems. In Proceedings
of the 2004 ACM/IEEE Conference on Supercomputing, page 4. IEEE
Computer Society, 2004.

[30] P. Wong and R. der Wijngaart. NAS Parallel Benchmarks I/O Version
2.4. NASA Ames Research Center, Moffet Field, CA, Tech. Rep. NAS-
03-002, 2003.

[31] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-Michel,
C. Geddes, J. Gu, H. Hagen, B. Hamann, et al. FastBit: Interactively
Searching Massive Data. In Journal of Physics: Conference Series,
volume 180, page 012053. IOP Publishing, 2009.

[32] W. Yu, J. S. Vetter, and H. S. Oral. Performance Characterization and
Optimization of Parallel I/O on the Cray XT. In Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on,
pages 1–11. IEEE, 2008.

[33] X. Zhang, K. Davis, and S. Jiang. IOrchestrator: Improving the
Performance of Multi-Node I/O Systems via Inter-Server Coordination.
In Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
1–11. IEEE Computer Society, 2010.

[34] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data
Compression. IEEE Transactions on Information Theory, 23(3):337–
343, 1977.

