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Abstract—CMT-nek is a solver of the Navier-Stokes equations
for compressible multiphase flows being developed at University
of Florida. The objective of this application is to perform
high fidelity, predictive simulations of particle laden explosively
dispersed turbulent flows under conditions of extreme pressure
and temperature. CMT has many environmental, ecological, in-
dustrial and national security applications. The physical processes
underlying these applications are complex and cover a very wide
range of spatial and temporal scales.

CMT based applications require enormous computing power
and are expected to be deployed on petascale and exascale
supercomputers. They also have a very rich set of computation
and data access patterns that are representative of other scientific
applications. Hence, they have the potential to serve as an
important benchmark for next generation supercomputers.

In this paper1, we describe CMT-bone that serves as a
proxy-app for CMT-nek. Proxy applications provide a simplified
framework for computational scientists and system designers
to investigate new node architectures, programming approaches
algorithmic design choices and optimization techniques and is an
important aspect of co-design. CMT-bone encapsulates key data
structures and key compute and communication operations in
CMT-nek and fully retains the workflow of CMT-nek, however, it
simplifies on the number of variables allocated and the number
of compute and communication operations performed at each
step of the work. The reduction in compute and communication
operations are kept proportional to avoid undue bias towards a
particular operation. This is shown by a validation of the proxy-
app with the main using the VERITAS tool developed at LLNL.

I. INTRODUCTION

CMT-nek is a proposed solver of the Navier-Stokes equa-
tions for compressible multiphase flows. The objective of
this application is to perform high fidelity, predictive simu-
lations of particle laden explosively dispersed turbulent flows
under conditions of extreme pressure and temperature. The
physical processes underlying explosive dispersal are com-
plex and cover a very wide range of temporal and spatial
scales. CMT has many environmental, ecological, industrial
and national security applications. Medical applications such
as needleless drug delivery, lithotripsy and micro-bubble-
enhanced ultrasound imaging rely upon compression wave or
shock interaction with particles and bubbles. CMT dominates

1A preliminary version of this work will appear in Tania Banerjee, Jason
Hackl, Mrugesh Sringarpure, Tanzima Islam, Siva Balachandar, Thomas
Jackson and Sanjay Ranka, CMT-bone: A Proxy Application for Compressible
Multiphase Turbulent Flows, Proceedings of HiPC 2016.

the behavior of natural and ecological flows such as explosive
volcanic eruptions, supernovae, and dust explosions in coal
mines and grain silos. In many applications of national defense
and security CMT plays an important role in our ability to
accurately predict and control explosive dispersal of particles.

CMT-nek leverages Nek5000, an open-source spectral ele-
ment based computational fluid dynamics code developed at
Argonne National Laboratory for simulating unsteady incom-
pressible fluid flow with thermal and passive scalar transport
[1]. Nek5000 is a highly scalable code, with demonstrated
strong scaling to over a million MPI ranks on ALCF BG/Q
Mira[2]. It is, however, limited to low speed flows by its
formulation and discretization. As a simulation workhorse,
CMT-nek is expected to facilitate fundamental breakthroughs
and development of better (physics-informed) models and
closures for compressible multiphase turbulence. CMT-nek
based applications will require enormous computing power
and are expected to be deployed petascale and exascale super-
computers where energy and thermal issues are as paramount
as the overall performance. They also have a very rich set of
computation and data access patterns that are representative
of other scientific applications. Hence, they have the potential
to serve as an important benchmark for next generation su-
percomputers where multiobjective (performance, energy, and
thermal isssues) optimization may be important.

CMT-nek offers a very rich set of computation and data ac-
cess patterns representative of complex scientific applications:

1) Domain decomposition: CMT-nek uses discontinuous
Galerkin methods to accomplish domain decomposition
and hence parallelism. Groups of elements are distributed
across processors even though an element is never subdi-
vided. As a result, the dominant communication pattern
is nearest neighbor point to point communication (with
up to 26 surrounding processes) to exchange surface
fluxes and migrating particles. Thus CMT-nek provides an
interesting use case for studying domain decomposition
and communication scaling on homogeneous as well as
heterogeneous platforms.

2) Unique computation structures: The solution of the un-
derlying solvers requires partial spatial derivative compu-
tation which involves dense matrix-matrix multiplication
for three dimensional domains. Here data is accessed



not only in unit strides but in strides of N and N2,
where N is the number of grid points in a cubic spectral
element in any one direction. Another example of a
computation intensive kernel is the dealiasing kernel that
interpolates all conserved and primitive variables from a
N×N×N grid to a finer M×M×M (M > N ) grid to
evaluate fluxes. Like derivative computation, dealiasing
uses matrix-matrix multiplications. Some of the other
computation patterns are vector updates, dot products
and matrix-vector multiplications. The low computation
to data access ratio of CMT-nek also makes it a represen-
tative application as it is a common characteristic across
many scientific applications.

3) Coupled data structures: The solution to the underlying
equation results in interaction between the particles and
the spectral elements. Determining new location of parti-
cles following advection of particles as a result of forces
exerted by the medium, calculating particle velocity and
force field (comprising of drag, stress gradient, inviscid
and viscous components) at all particle locations involve
extensive computations per particle. Particle movement
from one iteration to the next result in challenging load
balancing issues as the number of particles assigned to
a given element may be in-general highly non-uniform.
Scalable algorithms for point particle tracking presents us
a set of comprehensive computational and memory access
patterns as well as an opportunity to study communication
and load balancing algorithms.

4) Variable compute intensiveness: Different portions during
a single iteration of the application utilize cpu, cache and
memory modules variably. This makes it a challenging
application to tradeoff peformance, energy and thermal
objectives that are expected to be very important for next
generation supercomputers.

Thus, CMT-nek has the potential to become an important
application to evaluate current and future architectures.

In this paper, we describe CMT-bone, a proxy-app that is
based on CMT-nek. Proxy applications are small, portable
codes that capture the important computational aspects of the
larger scientific codes known as parents. Testing, simulating
or optimizing these codes is significantly easier than changing
parent codes, and therefore proxy apps are used by compu-
tational scientists, software developers, and system designers
to work together in understanding the required features and
tradeoffs in developing algorithms and underlying hardware
and system software. It is essential therefore to validate that
a proxy application indeed encapsulates the desired charac-
teristics of the parent. Examples of large scientific codes that
have been studied and optimized using proxy applications are
described in Section VI.

We have two important contributions in this paper.
1) We created a proxy application for a very complex

physics code capable of modeling compressible multi-
phase turbulent flows with dispersed particles. CMT-bone
uses different memory access patterns for volume data,
surface data and particles. Hence, using CMT-bone we

Fig. 1: Key datastructures and communication operations in
CMT-nek

can evaluate a variety of architectures, communication
network bottlenecks, and scalability issues. Additionally,
the particle simulation capabilities present in CMT-bone
will also allow us to study and model a variety of dynamic
load balancing algorithms for particle tracking.

2) We have validated our proxy application against the par-
ent application using VERITAS and present the validation
results for specific regions of the code.

The rest of the paper is described as follows. In Section II,
we describe our target application CMT-nek and its imple-
mentation details. Section III presents the implementation
details of CMT-bone. The experimental results are presented
in Section IV which validates CMT-bone as a proxy app for
CMT-nek. Finally, conclusions are given in Section VII.

II. CMT-NEK

CMT-nek is a proposed solver of the compressible Navier-
Stokes equations for multiphase flows. The objective of this
application is to perform high fidelity, predictive simulations
of particle laden explosively dispersed turbulent flows under
conditions of extreme pressure and temperature. The three-
dimensional Euler equations of gas dynamics are written
in the form of a conservation law (Equation (3), Appendix
A). These equations are reduced to a system of ordinary
differential equations for the conserved variables U at each of
Nx×Ny×Nz quadrature nodes on each of Nel finite elements
via the discontinuous Galerkin spectral element method. The
end result appears in semi-discrete form of Equation (40). The
two terms on the right hand side of Equation (40) must be
evaluated on each element. The first term contributes to ∂U/∂t
at every quadrature point on the grid, and the second term
is an additional effect added only to quadrature points lying
on element faces. Figure 1 shows a schematic representation
of important arrays and communication operations in CMT-
nek. Most of the variables required for evaluating the terms in
Equation (40) are stored in multidimensional arrays. All the
variables associated with the flow can be classified into two
categories - volume data and surface data.

Since CMT-nek is written in Fortran 77, multidimensional
column-major arrays are the only data structure available.
Table I lists array names, their dimensions, and the physical
quantities they store. Nx, Ny, Nz are the number of GLL
quadrature nodes in each direction of a given element Ωe



TABLE I: Storage of volume data in CMT-nek.

Variable Dimension Physical quantity
vtrans(. . . ,1) Nx, Ny , Nz , Nel, 1 gas density ρg
vtrans(. . . ,2) Nx, Ny , Nz , Nel, 1 constant-pressure specific heat cpg
vtrans(. . . ,3) Nx, Ny , Nz , Nel, 1 constant-volume specific heat cvg

t(. . . ,1) Nx, Ny , Nz , Nel, 1 temperature Tg
pr Nx, Ny , Nz , Nel pressure pg

vx, vy and vz Nx, Ny , Nz , Nel velocity components ug , vg , wg

U Nx, Ny , Nz , 5, Nel conserved unknowns (Equation (4))
rx Mx,My ,Mz , 9, Nel weighted metrics MMI

[
1
J

dri
dxj

]
vxd, vyd and vzd Mx,My ,Mz , Nel Iu, Iv, Iw

In nek5000. Nel is the number of elements on a given MPI
rank. vtrans and t are arrays of rank 5 whose first four
dimensions store volume data for all elements on a given MPI
task, and whose outermost dimension correponds to one of
ldimt passive scalars, such as gas density, specific heat or
temperature, as shown in the Table I. We have repurposed
them for thermodynamic quantities (Equations (10),(11)).

Surface data are stored contiguously for all faces on each
element. Typically these variables are also rank-4 arrays with
dimensions (Nx, Nz, Nfaces, Nel). Here Nfaces is the number
of bounding surfaces (3D) or edges (2D) of an element.
Nfaces = 6 and 4 for 3D and 2D elements, respectively.

All the point particles are stored in a rank-2 array
with dimensions (Ptprop, Npt), where Npt is the num-
ber of particles owned by an MPI rank and Ptprop is
the number of particle properties being tracked. Typically
we track information like particle location (x(p), y(p), z(p)),
particle velocity (up, vp, wp), fluid velocity at the parti-
cle location (u(g), v(g), w(g)) and forces on the particles
(Fx(p), Fy(p), F z(p)). This would correspond to 12 particle
quantities. In general we will track additional quantities such
as particle temperature, heat transfer, etc., and as a result we
envision Ptprop > 20.

It is convenient to explain the workflow and implementation
of CMT-nek by using Equation (40) as a reference. The left-
hand side of Equation (40) is explicitly discretized by a third-
order total-variation-diminishing Runge-Kutta scheme[3]. This
scheme advances the solution of the conservation laws from
time tn to tn + ∆t by computing the terms on right-hand-side
of Equation (40) explicitly. Figure 2 shows the workflow of
computing these right-hand-side terms. After certain prelimi-
nary computations, the surface and volume integral terms are
evaluated and the result is passed on to the time integration
step. Each component of this work flow is further expanded
to show the most intensive compute operations along with the
communication operations in a sequence which represents the
actual implementation.

A. Preliminary computations

Preliminary computations consists of several important steps
that are necessary for evaluating surface and volume integrals.
The workflow of this step is shown in Figure (3). Both, the sur-
face and volume integral terms on the right-hand-side of Equa-
tion (40) need the flux vector H which is a function of con-
served variables U and primitive variables ρg, ug, vg, wg, pg

Preliminary 
computations

Evaluate surface 
integral

Evaluate volume 
integral

Time integration 
step

Fig. 2: A macro scale workflow of CMT-nek.

and Tg (see Equations (7),(8),(9)), grid metrics ∂ri/∂xj and
interpolation operator I. Since the current scope of CMT-
nek does not include deforming and translating grids, the
grid metrics and interpolation operators are computed once
and stored for the rest of the simulation. Thus, the main
objective of this block is to compute the primitive variables
ρg, ug, vg, wg, Tg, pg, ag , transport properties like λ, ν, κ and
specific heats cpg, cvg . Figure 3 shows the steps in which these
quantities are computed. Most of the computations in this
block can be categorized as pointwise arithmetic with O(N3)
computational workload, however, the nature and the number
of arithmetic operations are dependent on the specific task.
For example, the process of computing primitive variables like
ρg, ug, vg, wg involves a single pointwise division operation
while the process of computing pressure pg and temperature
Tg will involve multiple pointwise addition, subtraction and
division. It is important to note that when dealiasing is
turned on, the velocity components are interpolated onto a
fine mesh. This step is a matrix-vector multiplication with
O(N4) computational workload. Also, it must be noted that
the current CMT-nek framework enables users to implement
equation of state and transport laws of their choice via user-
defined subroutine userEOS and uservp.

B. Evaluate surface integral

After the primitive variables are computed, we can proceed
to evaluate the surface integral term on on the right-hand-
side of Equation (40). Figure 4 shows the sequence of steps
involved in the evaluation of the surface integral term. Till
the end of preliminary computations, all the variables are
stored as volume data in a multidimensional array. Clearly,
it will be cumbersome and inefficient to stride through grid
points that lie on the surface of the elements or volume data
multiple times to evaluate the surface integral term. Therefore,
“full to face” mapping is generated at preprocessing which
will extract the surface points from the volume data and store
them contiguously in a separate “surface” array. Thus the first
step in this block is to extract the surface points for all the nec-
essary variables (primitive variables ρg, ug, vg, wg, Tg, pg, ag ,
transport properties λ, ν, κ and specific heats cpg, cvg) and
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Fig. 3: Workflow of preliminary computations that precedes the evaluate surface and volume integral steps.

store them in a separate array so that all subsequent steps
can be performed effieciently.

In discontinuous Galerkin method variables are permitted
to have jumps (discontinuity) across the element faces. In
other words, a gridpoint on any face will have two values
associated with two elements who share that face. As a
consequence of this, the “full to face” step provides only
the surface data corresponding to all the faces on an element.
This information is referred to as “Left state” in the workflow
shown in Figure 4. Since nek5000 is based on unstructured
collection of elements, an independent framework is in place
that maps the connectivity of all the elements. Therefore, to
obtain the surface data corresponding to the other element that
shares the same face, one needs to read the connectivity map
appropriately. At this stage it is important to emphasize that the
computational domain is distributed and as a consequence the
connectivity map has to be decoded across remote MPI ranks.
To accomplish this, we utilize nek5000’s, sophisticated com-
munication framework along with the domain decomposition
and element connectivity framework to obtain the surface data
corresponding to the other element that shares the same face.
Note that we refer to this information as the “right state” in
the workflow. This process of getting the right state is referred

to as “GS op + Pointwise Arithmetic.” Here the “Pointwise
Arithmetic” step can be characterized as O(N2) computational
workload.

Once the “left” and “right” states are available, we loop
over all faces on all elements on a single MPI task. For each
face, it interpolates all the variables on a single face to a
finer grid of Mx × Mz points and evaluates the numerical
flux h∗ in Equation (39) at each of these surface nodes.
It is to be noted that while H is the flux function, h∗

represents the values of the flux function at the grid points,
arranged into a computational vector. Our numerical flux is
the Advection Upstream Splitting Method (AUSM+)[4]. This
flux computation can be done for each point on the element
faces independently. If a face has no neighbor, a boundary
condition is applied instead. Once the fluxes are computed,
they get projected back to the (Nx, Nz) GLL grid for a given
face by tensor-nested matrix multiplication in two successive
directions with the Nx × Mx matrix I>A . Once all faces
are finished, they get mapped back to the cubic storage by
“face to full” step.
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C. Evaluate volume integral

Next we evaluate the first term on the right-hand-side
of Equation (40). All operations here will be performed
on cubic data (Nx, Ny, Nz). When dealiasing is turned on,
the conserved variables are interpolated on to the fine grid
(Mx,My,Mz) and then combined with the primitive variables
which are also interpolated on to the fine grid to get the flux
vector h. The process of computing the flux vector can be
classified as “Pointwise Arithmetic” with O(N3) computa-
tional workload. To minimize the memory footprint of the
code, h is only stored for one element, one equation at a time.
Next the flux vector h is multiplied with the corresponding
geometric metric vector “rx” and then the transpose of D is
applied to it in each of the (r, s, t) directions. This step is of
O(M4) computational workload when dealiasing is turned on
and the grid is sampled onto a fine grid. Multiplication by
the N ×M matrix J> projects the right-hand-side volume-
integral term back to the (Nx, Ny, Nz) grid. In this workflow,
the computational workload of the interpolation steps is of
O(M × N3) for GLL → GL points and O(N × M3) for
GL→ GLL points.

At the end, the result of the volume integral term is added
to the contribution of the surface integral term to get the right-
hand-side of Equation (40) for all equations and all elements.
This result is then passed to the time integration step and the
conserved variables are advanced to the next time step (stage
in RK 3 time integration scheme).

After the conserved variable are updated, the control moves
to the point particle tracking. In the current version of CMT-

nek, Lagrangian point particle tracking is a user-defined source
code that gets appended at compilation. Furthermore, the
current code does not distribute the point particle force data
back into Equation (40). In the point particle tracking code,
we first interpolate the fluid velocity at the off-grid point
particle location. Then the particle equations of motion (see
Equation (14)) are solved and the point particles are moved to
their new location with updated velocity. When the particles
move to their new position, some of them may leave the
spatial domain of one MPI rank and enter into the neighboring
spatial domain owned by another MPI rank. At this stage, such
particles are exchanged between corresponding MPI ranks
so that all point particles are assigned to the appropriate
MPI ranks. This concludes the point particle tracking and the
control is passed back to the flow solver.

III. CMT-BONE

CMT-nek will be the primary simulation tool employed
by the researchers at the Center to perform state-of-the-art
simulations of compressible multiphase turbulence on some
of the largest supercomputing facilities at the NNSA Tri-
labs. Therefore, it is essential that the performance of CMT-
nek is evaluated and existing algorithms tuned to ensure that
these simulations are performed at the peak capacity of the
code and the supercomputer. The use of parent application
to evaluate the impact of various algorithmic design choices
can be quite cumbersome, which drives the need to develop a
representative proxy app that provides a simplified framework
for computer scientists and system designers to investigate the
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Fig. 5: Workflow of evaluate volume integral step

impact of node architectures and algorithmic design choices
on the performance of the parent application.

CMT-bone will be a representative proxy application, if
it encapsulates key data structures and key compute and
communication operations in CMT-nek. From the detailed
description of the CMT-nek implementation and the various
workflows presented in the previous section, we can develop
an abstraction of CMT-nek which will be a useful foundation
on which CMTbone will be built. Figure 6 shows an abstract
representation which highlights the important arrays, compu-
tations and communication operations in CMT-nek. To put this
schematic in the context of the implementation details and the
workflows, we can clearly see the following

• The evaluate surface integral described in II-B is rep-
resented by the first four blocks. After close inspec-
tion of Figure 4 and Figure 6, it is obvious that the
“full to face” step is represented by “Volume to sur-
face” block, “GS op” step is represented by “Face data
exchange” block. While the “computation for face points”
is an abstraction of “AUSM+” and “Boundary condition”
step in Figure 4. Finally the “face to full” step in
Figure 4 is represented by “Surface to volume” block
in Figure 6.

• The next two blocks - “Pointwise computation for volume
points ” and “Derivative computation volume points”
represent the evaluate volume integral section described
in II-C.

• The last four blocks represents the Lagrangian point
particle tracking in CMT-nek. Note that the last block
“Distribute point particle force on volume data” is cur-
rently under development and therefore not described in

the earlier sections.

CMT-bone fully retains the workflow of CMT-nek; however,
it simplifies on the number of variables allocated and the
number of compute and communication operations performed
at each step of the work. For example, CMT-bone implemen-
tation captures the basic steps in CMT-nek to solve Equation
24. As a result, CMT-bone uses the data structures described
in the previous section to store volume and surface data. This
first version of CMT-bone uses all the five conserved variables
of CMT-nek; namely, mass, energy and the three components
of momentum. CMT-bone also uses a subset of primitive
variables used in CMT-nek and the primitive variables in
CMT-bone are pressure, density and the three components of
velocity. Particle processing in CMT-bone is identical to that
in CMT-nek.

CMT-bone retains the key operations of CMT-nek. For
example, CMT-bone processes operations described in Sec-
tions II-A, II-B, II-C. However, it trims out operations such
as computation of diffusive fluxes, and treatment of viscous
flows. In future versions of CMT-bone we will reduce the
number of variables further with a caveat that the reduction in
compute and communication operations are kept proportional
to avoid undue bias towards a particular operation. To ensure
that the mini-app represents the parent application in its most
mature state, CMT-bone and CMT-nek development is done
concurrently. As new capabilities are added and tested in CMT-
nek, their abstractions will be added in CMT-bone.

Table II is a tabular representation of the implementation
and CMT-nek workflow shown in Figure 6. Its last column
gives the number of variables that are operated at each step in
CMT-nek and the corresponding number in CMT-bone.



Fig. 6: CMT-nek and CMT-bone workflow that shows the sequence of key compute and communication operations on various
data stuctures

TABLE II: Key subroutines in CMT-nek implementation and their corresponding description in the CMT-nek workflow shown
in Figure 6.

step CMT-nek subroutine CMT-nek workflow description number of variables

CMT-nek CMT-bone
1 primitive variables pointwise computation for volume points 9 5
2 fillq Volume to surface 15 10
3 gs op face data exchange 18 10
4 ausm computation for face points 5 5
5 addfacetofull surface to volume 5 5
6 evaluate conv h Pointwise compuation for volume points 15 15
7 flux div integral Derivative compuation for volume points 15 15
8 baryweights findpts eval Interpolate to particles 3 3
9 update stokes particles Move particles 3 3
10 crystal tuple transfer Relocate particles 3 3
11 - Distribute point particle force on volume data - -

IV. VALIDATION APPROACH

We compared the performance of CMT-bone against that
of CMT-nek in order to study which resource utilizations of
CMT-bone are representatives of CMT-nek, if at all. We ran
our experiments on Cab, a 431 Tflop Intel Xeon Linux cluster
with 1, 296 nodes. Each node on Cab is a dual socket Sandy
Bridge processor with 32 GB memory, 20 MB shared L3 cache
across 8 cores on each socket, 32 KB L2 cache private to each
core, and L1 data and instruction caches of size 32 KB each.

A. Input Parameters

CMT-nek flow constitutes of four important stages as listed
below:

1) Point computations: This is where the primitive variables
are computed for each grid point and is encapsulated in
point_compute_kernel.

2) Communication step: This is where surface data is ex-
changed between neighbors and is considered the most
communication intensive. The code in this region is
encapsulated in comm_kernel.

3) Computation step: This is where fluxes and spatial partial
derivatives of the fluxes are computed. This is the key
computation step in CMT-nek and is referred to as
compute_kernel.

4) Processing particles: This is where particles are initial-
ized, randomly distributed and tracked. This region is
represented in particles_kernel.



TABLE III: Resource groups for Intel Xeon

Resource Group Intel Xeon
Floating point unit FP
Branch unit BR
Prefetch events PREFETCH
L1 cache L1
L2 cache L2
Last level L3 cache L3
Translation look aside buffer TLB
Memory MEM
Remote socket traffic OFFCORE
PCI express bus PCIE

TABLE IV: Workloads used in our experiments

Number of Elements Workload Id Polynomial Order

512

1 5
2 7
3 9
4 11
5 13
6 15

1024

7 5
8 7
9 9
10 11
11 13
12 15

CMT-bone captures these stages as well. The
particles_kernel is identical in CMT-nek and CMT-
bone. Hence we did not validate the particles_kernel.

We performed on-node performance validation of the re-
maining kernels by scaling both applications from 1 through
16 processes on one core of Cab. We varied workload by
changing the polynomial order to 5, 7, 9, 11, 13, 152 and the
number of spectral elements 512, and 1024.

B. Resource Groups

For on-node performance comparison of CMT-nek and
CMT-bone, we used the proxy application validation frame-
work VERITAS developed by Islam et al. in [5]. VERITAS
categorizes hardware performance counters on an architecture
into high-level resource groups and uses machine-learning
techniques to attribute the efficiency loss with scale of both
the applications to their utilization of high-level resources on
Intel Xeon. Table III presents the high-level resource groups
on Intel Xeon.

C. Validation Methodology

VERITAS defines validating a proxy application as com-
paring how closely the data subspaces of two applications
match. The validation process has two steps: (1) identify which
resource utilization behaviors impact scalability in CMT-nek;
(2) identify which resource utilization behaviors are covered
by CMT-bone and how well.

1) Identifying important resources: To identify the re-
sources that are the bottlenecks in the parent application,
VERITAS uses efficiency loss with scale as a reference. Ef-
ficiency loss increases as an application uses more cores on
a multi-core machine. Since every performance event has a
non-zero penalty, VERITAS uses the total penalty incurred by
a performance metric to compare against efficiency loss of

2Odd Nx ensures even polynomial order and integral whole numbers for
M , the number of points for overintegration.

the application. In fact, the more closely the penalty of a
performance metric follows the growth of efficiency loss as
an application scales, the more important that metric is (and
in turn the corresponding resource is) in predicting efficiency
loss of the application.

Based on all the performance metrics collected from CMT-
nek workloads, VERITAS identifies a sparse subset of per-
formance metrics that can describe the characteristics of
efficiency loss and then uses these metrics to build a predic-
tive linear model. Using the inferred sparse model, VERITAS
combines per-metric importances to estimate resource-wise
importances. Thus, VERITAS enables users to obtain a broad
understanding of which hardware resources lead to perfor-
mance bottlenecks in an application, as well as the relative
importance of these resources in determining performance
of the parent application. This knowledge helps the users to
develop a proxy application which nicely covers the hardware
resources that are important in determining the behavior of the
parent application.

The underlying assumption in sparse representations is that
the data is drawn from a union of low-dimensional subspaces,
which need not be completely disjoint or orthogonal. VERITAS
employs the idea that a complex pattern can be effectively
decomposed into a small set of diverse, elementary patterns.
Mathematically, this assumption is expressed as follows. Given
a data sample y ∈ Rn and a dictionary of K representative
patterns D ∈ Rn×K , the sparse representation a ∈ RK can be
obtained as

min
a
‖y −Da‖22 s.t. ‖a‖0 ≤ κ. (1)

where ‖.‖0 denotes the `0 norm that counts the total number
of non-zero entries in a vector, ‖.‖2 is the `2 norm, and κ
is the desired sparsity. In our case, y is the efficiency loss
(or loss in runtime), n is the number of workers (or the
number of workloads), the dictionary D is the collection of
K performance metrics. Note that, this optimization problem
solves for the sparsest set of performance metrics that can
reconstruct the efficiency loss. In particular, VERITAS uses the
Orthogonal Matching Pursuit (OMP) algorithm proposed in [6]
to select that smallest diverse subset of metrics to describe the
performance loss.

VERITAS uses two parameters to tune the complexity and
the sparsity of the model it builds to explain efficiency
loss. The complexity parameter controls how sophisticated
the model needs to be in order to explain the characteristics
of performance data better. Higher value for this parameter
means more number of resources will be considered in order
to explain the performance loss as the applications scale. This
parameter is used to identify higher-order bottlenecks of an
application, whose resource utilization that may become a
problem when the immediate bottleneck is removed. However,
the sparsity parameter that controls how many counters are
highly correlated with the performance loss are also considered
per resource. The higher the value of the sparsity parameter,
the more dense the model is, and hence the model might select
a large number of counters that only contribute marginally. The



idea is to build a simple model with high enough sparsity so
that only a small number of performance metrics are dominant
causes of efficiency loss and selected by the model.

2) Comparing proxy to parent: The problem of comparing
proxy to parent can be posed as measuring the compatibility
between the two feature spaces defined by a set of performance
metrics. In statistical modeling, it is common to assume that
underlying data distribution can be described using a fewer
degrees of freedom. VERITAS uses Principle Component Anal-
ysis (PCA) to identify the directions of maximal variance and
projects the data onto the subspace. Consequently, instead of
comparing the high-dimensional feature spaces directly, VER-
ITAS compares their corresponding low-dimensional represen-
tatives. A linear subspace can be conveniently represented
using its basis B ∈ RC×d, where C is the dimensionality
of the data, and d is the dimensionality of the subspace.
The collection of all d−dimensional linear subspaces form
the Grassmannian G(d,C), a smooth Riemannian manifold,
which allows effective geometric and statistical analysis of
subspaces. VERITAS constructs the geodesic curve between the
two subspaces and estimates a dissimilarity measure between
them using the computed dissimilarity. Note that, for a given
resource group, the lower the resource subspace dissimilarity
measured, the higher the compatibility between the two appli-
cations.

VERITAS considers the two applications to be compatible,
with respect to a given resource group, when (a) the two
subspaces are geometrically well-aligned, and (b) the data in
the projected subspaces are similarly distributed. The first can
be obtained by computing the principle angles between the
basis vectors along the principle components. In cases where
there are multiple workloads, the dissimilarity measure is
obtained as the average of the individual workloads. VERITAS
defines the Coverage measure for each resource r as

Coverager = 1− dissimilarityr,∀r. (2)

D. How to Interpret Results
Using Figure 8a we will explain the various characteristics

of the charts generated by VERITAS. Along the X-axis, the
importance of resources in predicting efficiency loss is plotted
(between 0 and 1 where 0 means the lowest and 1 means the
highest importance), and along the Y-axis, the quality of match
(or Coverage) for each resource is plotted (again between 0
and 1 where 0 means “does not cover” and 1 means “covers
100% behavior”). Coverage ≥ 0.8 means that on average
the proxy covers more than 80% of the utilization behavior
of a certain resource. Similarly, Resource Importance ≥ 0.8
means that on average a resource utilization behavior affects
scalability of an application with more than 80% probability.
In our analysis, we assume Coverage ≥ 0.8 as good coverage,
and Resource Importance ≥ 0.8 as important to cover (hence
the dotted line through 0.8). However, this is a user defined
threshold that can be passed to VERITAS as an input. VERITAS
also generates per workload charts. Such a chart shown in
(Figure 9b) shows the coverage behavior for the important
resources in red for ease of identification.
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(b) κ = 15

Fig. 7: Results for different κ for τ = 10

V. RESULTS

In this section, we first present the rational behind the choice
for the sparsity and complexity parameters in Section V-A
followed by the validation results from our experiments sep-
arately for the three different kernels in code in Sections V-B
through V-D.

A. Determining Parameters:

In order to determine the model parameters κ(sparsity)
and τ (model complexity) for a kernel being validated, we
vary both these parameters and identify a reasonable setting
that can be used for the rest of the analysis for that kernel.
Due to lack of space, we only present the results of the
compute_kernel here. The results of the other kernels are
similar and not presented in this paper.

Figure 7 shows a subset of results for a combination of
different values for parameters κ and τ . We observed that
decreasing sparsity (increasing κ, i.e. involving more perfor-
mance metrics for a resource) does not significantly change
the importance of resources. Also, using τ = 10 or more en-
courages OMP to include different resources in the solutions.
This phenomenon results in L3 resource becoming important.
Higher values of τ or κ do not change the importance of the
resources in any significant way. Hence, for the rest of the
experiments with compute_kernel, we used κ = 15 and
τ = 10.
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Fig. 8: CMT-bone captures all the resource utilization behavior
of CMT-nek for the two kernels.

B. Point computations:

To validate the point computation kernel, VERITAS com-
pares the resource utilization behavior of the kernel for CMT-
nek and CMT-bone. This kernel essentially performs a number
of vector-vector multiplications to compute the primitive vari-
ables at every grid point.
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Fig. 9: For comm_kernel, CMT-bone does not cover the memory utilization behavior of CMT-nek with scale for multiple
workloads.

Figure 8a shows that the memory utilization behavior of
CMT-nek is the most predictive of the efficiency loss of
point_compute_kernel with scale in CMT-nek and the
corresponding kernel in CMT-bone captures that behavior very
well (with Coverage > 0.8). Figure 8a also shows that the
performance behavior of the point_compute_kernel in
CMT-bone matches all resource utilization behavior of the
kernel in CMT-nek on Xeon, hence it is an ideal proxy.

C. Computation step:

The key computation step in CMT-nek essentially performs
matrix-matrix multiplication for computing fluxes and spatial
partial derivatives of fluxes.

Figure 8b reveals that the major cause for efficiency loss
with scale in the compute_kernel of CMT-nek is L3
and node memory utilization and CMT-bone covers these
resource behavior perfectly. Further investigation reveals that
the gradient and the volume integral computations in this
module perform a number of matrix-matrix multiplications
where matrices are accessed in strides of 1, N and N2. This
results in a large number of L3 store misses which in turn
generates a large number of node memory store operations.

D. Communication step:

Even though the performance of this module is dominated
by inter-node communication, our analysis identifies the key
computation behavior that cause efficiency loss in this kernel
with scale, since we collect on-node hardware performance
counters.

Figure 9a shows that even though memory utiliza-
tion is the most important behavior that impacts scal-
ability (Resource Importance ≥ 0.9) of CMT-nek, the
comm_kernel in CMT-bone does not capture this behavior
(Coverage < 0.5). Figure 9b shows the performance charac-
teristics for each workload with scale and it can be seen that
the performance behavior of CMT-nek and CMT-bone differs
significantly for the different workloads specially for resources
such as MEM.

The runtimes for CMT-bone and CMT-nek for the four
different regions corresponding to workload 12 are plotted in
Figures 10 through 12. These figures show that runtimes for
both the applications are comparable.

VI. RELATED WORK

In this section we present some existing benchmarks and
proxy apps that are part of the CORAL benchmarks [7]. The
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Fig. 10: Comparison of run times of CMT-nek and CMT-bone
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CORAL benchmarks were developed in a collaboration among
Oak Ridge National Laboratory, Argonne National Laboratory
and Lawrence Livermore National Laboratory.

Nekbone [8], is based on Nek5000, and captures the prin-
cipal computation and communication kernel. Like Nek5000,
Nekbone solves a standard Poisson equation using the spectral
element method with an iterative conjugate gradient solver
along with a simple preconditioner. The entire computational
domain is partitioned into high-order quadrilateral elements
that are mapped to the processors using spectral bisection.
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Fig. 12: Comparison of run times of CMT-nek and CMT-bone
for the comm_kernel.

LULESH is a proxy application for shock hydrodynamics
and represents the behavior of hydrodynamics code such as
ALE3D at Lawrence Livermore National Laboratory (LLNL).
LULESH has been used to evaluate the strengths and weak-
nesses of different existing (MPI, OpenMP, MPI+OpenMP,
CUDA) as well as newer (Chapel, Charm++, Liszt, Loci)
parallel programming models [9]. LULESH has also been
used in [10] for analyzing factors impacting performance and
energy consumption of OpenMP applications and minimizing
energy usage by throttling concurrency based on runtime
feedback of performance and energy consumption.

AMG2013 [11] is a parallel algebraic multi-grid solver that
solves a linear system of equations arising from problems on
unstructured grids. AMG2013 is a proxy application derived
from the BoomerAMG solver in the hypre library being
developed at LLNL. AMG2013 is a synchronous code exhibit-
ing surface-to-volume relationship in the communications and
computations patterns. AMG2013 also has low computation
to data access ratio and is a memory intensive application.

Qbox [12] is a first-principle molecular dynamics code
that is used to compute properties of materials. A Qbox run
stresses memory bandwidth, is characterized by high floating-
point intensity and uses global collectives. The two main
computational operations dense linear algebra implemented
in a parallel fashion using ScaLAPACK library, as well as
a custom 3D Fast Fourier Transform. The primary data struc-
ture is the electronic wavefunction that is distributed across
MPI processes. The main computation operation are matrix
multiplication, Gram-Schmidt orthogonalization and parallel
FFTs.

UMT2013 [13] is a single physics package code for de-
terministic radiation transport in unstructured mesh. It has
high computation intensity, large message sizes and stresses
memory bandwidth. Utilizing the distributed memory of a
platform, the benchmark provides impressive weak scaling to
very large core counts. Validation of a number of parent
application and corresponding proxy applications is analyzed
in [5], such as OPENMC and XSBENCH. OPENMC is the
parent application that computes the path of particle neutron
through a nuclear reactor using Monte Carlo simulations.
XSBENCH is a proxy of OPENMC that represents the most
compute intensive kernels of OPENMC accounting for about
85% of the total runtime of OPENMC.

Effective implementation of CMT-bone on parallel ma-
chines will require designing dynamic load balancing al-
gorithms due to variable density of particles and particle
movement. The methods in [14] show how particles and
spectral elements can be mapped in a simple architecture
independent representation, such as a one dimensional array,
while still preserving node locality. The methods in [15]
present optimizations for fast mapping on hybrid architectures.

VII. CONCLUSIONS

In this paper, we have presented the key implementation
components of CMT-nek that was used to develop CMT-bone.
CMT-Bone has several interesting features that can be used to



evaluate different memory access patterns for volume data,
surface data and particles. Hence, using CMT-bone we can
evaluate a variety of architectures, communication network
bottlenecks, and scalability issues. Additionally, the particle
simulation capabilities present in CMT-bone will also allow
us to study and model a variety of dynamic load balancing
algorithms for particle tracking. CMT-bone was validated to be
a representative application of CMT-nek for the computation
intensive region of the code, using VERITAS.
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APPENDIX A

A. Governing Equations

The three-dimensional Euler equations of gas dynamics are
written in the form of a conservation law

∂Um

∂t
+∇ ·Hm = Rm, (3)

where Um is the mth of five conserved variables,

U = φg


ρg
ρgug
ρgvg
ρgwg

ρgEg

 , (4)

for a gas occupying the fraction φg of an infinitesimal volume
V surrounding a given point x,

φg(x) ≡ lim
V→0

Vg
V
. (5)

The corresponding volume fraction occupied by particles at a
given point is φp(x) ≡ 1 − φg(x). The gas velocity u and
spatial coordinate x are

u =

 ug
vg
wg

 =

 u1

u2

u3

 , x =

 x
y
z

 =

 x1

x2

x3

 , (6)

ρg is the gas density, Eg is the mass-specific total energy
eg + 1

2 |u|
2 of the gas, e is the gas internal energy, and pg is

the thermodynamic gas pressure.
Hm ∈ R3 is the flux vector of equation m. For fluid mass

U1,
H1 = φgρgu = U2−4, (7)

and, for gas momentum U2−4,

H2 = φg

 (ρgug)ug + pg
(ρgug) vg
(ρgug)wg

 ,H3 = φg

 (ρgvg)ug
(ρgvg) vg + pg
(ρgvg)wg

 ,
H4 =φg

 (ρgwg)ug
(ρgwg) vg
(ρgwg)wg + pg

 ,
(8)

and, for gas total energy ρgEg ,

H5 = φgu (ρgEg + pg) . (9)

The system is closed by an equation of state,

[pg, Tg] = EOS (ρg, eg) . (10)



Treatment of the particles and the source term due to the
particles is deferred for the present time. For the present
discussion, Rm = 0,m = {1, . . . , 5} Internal energy per unit
mass e = E − 1

2 |u|
2 is related to gas temperature T by the

intensive property cv , the constant-volume specific heat, such
that

eg =

∫
cvg(T )dT. (11)

Generally, Equation 11 must be solved for temperature T
implicitly, iteratively, or via tabulation. For calorically perfect
gases, cvg is constant. For both thermally and calorically
perfect gases, pressure is obtained last via

pg = ρgRgTg, (12)

where the specific gas constant R = (γ − 1) cvg requires the
specification of γ = cpg/cvg , the ratio of constant-pressure
specific heat cpg to cvg .

The current version of CMT-nek has one-way coupled
point particle tracking capability which means that the point
particles are advected based on the forces exerted by the gas,
however, the particle motion itself does not modify or affect
the surrounding flow. The equation of motion are as shown
below

dx(p)

dt
= v(p) , (13)

dv(p)

dt
=

1

m(p)

(
F(p)
QS + F(p)

SG + F(p)
IU + F(p)

V U

)
. (14)

In the above, superscript (p) refers to the pth of Mp particles.
x(p) and v(p) is the location and velocity of the point particle p.
The Eulerian quantities are represented by superscript (g) and
refer to interpolated values at particle position x̃(p). F(p)

QS is the
quasi-steady drag term, F(p)

SG is the stress gradient force, F(p)
IV

is the inviscid-unsteady force and F(p)
V U is the viscous-unsteady

force. The expression for these forces are given below

F(p)
QS = 3πµ(g)d(p)

(
u(g) − v(p)

)
f1(Re(p),M (p))f2(φ(p)) , (15)

F(p)
SG = V (p)ρ(g)Du(g)

Dt
, (16)

F(p)
IU ≈ 1

2
V (p)f3(M (p))f4(φ(p))[
ρ(g)Du(g)

Dt
− dρ(g)v(p)

dt

]
, (17)

F(p)
V U = 3πµ(g)d(p)

∫ t

−∞
KV U

(
(t− ξ),Re(p)

)
[
ρ(g)Du(g)

Dt
− dρ(g)v(p)

dt

]
dξ , (18)

where µ(g) is the viscosity of gas, ρ(g) is the density of gas,
d(p) is the diameter of the point particle, V (p) is the volume
associated with the point particle, Re(p) is the Reynolds

number based on the magnitude of relative velocity of the
particle with respective to the surrounding flow, Ma(p) is the
Mach number based on the relative velocity of the particle.
f1(Re(p),M (p)) is the finite Mach number and finite Reynolds
number correction and f2(φ(p)) is the volume fraction correc-
tion to the quasi-steady drag term. f3(M (p)) and f4(φ(p)) are
the finite mach number and volume fraction correction to the
inviscid-unsteady (kernel) force term, respectively. is the vol-
ume fraction correction to the inviscid-unsteady (kernel) force
term. KV U is the viscous-unsteady kernel for computing the
viscous unsteady force. Full expressions for these correction
terms can be found in [].

B. Discontinuous Galerkin scheme

a) The weighted residual statement: Discontinuous
Galerkin methods solve Equation 3 by partitioning the domain
Ω into nelt nonoverlapping elements, the eth of which is Ωe. In
the following section, we consider a single conserved variable
Um in Equation 4 and omit the subscript m. We approximate
U by a truncated series of basis functions whose domain is
Ωe and enforcing a weighted-residual statement such that∫

Ωe

v(x)
∂U(x)

∂t
dV +

∫
Ωe

(∇ ·H) v(x)dV = 0 (19)

for all test functions v : R3 → R in the same function space
where U is approximated[16], [17]. We then integrate the flux
divergence v∇ ·H by parts:∫

Ωe

v(x)
∂U(x)

∂t
dV =

∫
Ωe

(∇v) ·HdV −
∫
∂Ωe

v(x)H · n̂dA
(20)

where n̂(x) is the unit normal vector to ∂Ωe facing outward
from Ωe.

The central and distinguishing feature of discontinuous
Galerkin methods is the replacement of H · n̂ in the surface
integral in Equation 20 with a numerical flux H∗ · n̂ that

1) weakly enforces flux continuity (or boundary conditions
should ∂Ωe ⊂ ∂Ω) at the element interfaces without
demanding continuity of U there, and

2) ensures physical correctness of the solution independent
of functional representations within the element.

It is important to introduce some notation now; at a given
point x on ∂Ωe,

U−(x) ≡U(x) taken from the interior of Ωe (21)
U+(x) ≡U(x) taken from outside of Ωe (22)

where U+ is understood to be equal to U− for the neighboring
element sharing ∂Ωe with the eth element. The numerical flux
must be consistent:

H∗(U−,U+) = H(U) if U+ = U−, (23)

and will be discussed further in later sections.



Fig. 13: A schematic representation of a collection of spectral
elements making up a computational domain. A schematic
representation of a reference element is also shown.

b) Spectral element discretization: Inside the eth element
Ωe the unknowns U are represented in some finite-dimensional
space of functions χ. The representation of a single (scalar
component of Equation 4) conserved variable U is written as
a truncated series expansion

U(x) ≈
N∑
i=1

Ûiφi(x), x ∈ Ωe, (24)

that is, a linear combination of basis functions spanning χ
{φi : Ωe → R, i = 1, . . . N} ⊂ χ, each of which is weighted
by some coefficient Ûi. Note that Equation (24) refers to a
one-dimensional problem. In this simplification the element is
just a line segment. Furthermore,

1) Coordinate x in each element is isoparametrically
mapped onto the reference element r ∈ [−1, 1]. Figure
13 shows a schematic of 2 dimensional space divided
into elements. Also a schematic of a reference element is
shown in the figure.
• This transformation has, ∀x ∈ Ωe:

a) Jacobian Jac(x) ≡ |∂x/∂r|
b) Metrics ∂r/∂x

• χ is the space of (N − 1)th-order polynomials PN−1.
• The coefficients Ûi = U(xi), i = 1 . . . N are the

values of the unknown at grid points xi within Ωe.
Thus, Equation 24 is said to be a nodal approximation
to U .

• The ith basis function φi = li(x) is the Lagrange
interpolating polynomial associated with the ith node
xi.

– This representation extends to higher dimensions
by tensor-nesting the Lagrange polynomials in each
of the coordinate directions. For example, in three
dimensional space we have directions r, s, and t on
the cubic [−1, 1]3 reference element.

2) The grid points on the reference element are the N
Gauss-Legendre-Lobatto (GLL) quadrature nodes[18] .

The next major numerical approximation underlying the
method is to approximate all integrals by Gaussian quadrature

on the N GLL points in the reference element. Quadrature
approximates an integral by a weighted sum of nodal values,∫ 1

−1

f(r)dr ≈
N∑
i=1

ωif(ri), (25)

where the quadrature weight for the ith point ωi depends
on the locations of the quadrature nodes ri. Formulas for
determining quadrature weights for the GLL nodes are well-
known [18], [16].

Nodal values at grid points are arranged into vectors along
a given reference-element coordinate (r is shown):

U ≡

 U(r1)
...

U(rN )

 ,v ≡
 v(r1)

...
v(rN )

 ,h1 ≡

 Hx(U(r1))
...

Hx(U(rN ))

 .
(26)

Then defining

diag(v) ≡

 � 0
v(ri)

0 �

 , (27)

will allow us to write vectors of N nodal values as N × N
diagonal matrices:

J ≡diag(Jac) (28)
M≡diag(ωj). (29)

Finally, the derivative of a function approximated by Equa-
tion 24 at its N nodes ri may itself be approximated by finite
differences. Many authors[16], [17], [19] provide the details of
how to represent (N−1)th-order-accurate finite differences on
each of N points as matrix-vector products between a N ×N
differentiation matrix D and a vector of nodal values:

Dv ≈

[
dv

dr

∣∣∣∣
r1

, · · · , dv
dr

∣∣∣∣
rN

]>
(30)

For the rest of this section, subscripts refer to Cartesian
components of vectors in R3, so rj is the jth component
of (r1, r2, r3)> = (r, s, t)> and xi is the ith component of
x (Equation 6). Dj refers to an appropriately tensor-nested
differentiation operator in the direction of rj ([16], Chapter 4).
Einstein summation convention is applied to spatial coordi-
nates, and bold-faced quantities are vectors of grid points
(Equation 26), not spatial vectors. M is also tensor-nested:
Mmno = ωmωnωo for the grid point with indices m,n, o.

Additionally defining E as an indicator that is zero for all
grid points except those on the element faces ∂Ωe, the dis-
continuous Galerkin weighted-residual statement Equation 20
may be written as a semidiscrete governing equation in matrix
form as

v>
[
JM∂u

∂t

]
≈
[[

diag
(
dri
dxj

)]
Div

]>
[Mhj ]

− v>
[
EA
(
JAh

∗
j n̂j
)]

(31)



where JA is the Jacobian of the transformation mapping a
given face (selected by E) to the reference [−1, 1]2 square. By
equating coefficients of the nodal values of the test function
v, the weighted residual theorem is satisfied for all possible
v ∈ χ and the semidiscrete system reads (for the vector of
N GLL points in a given element along a given line in rst
space)

M∂u

∂t
= D>i

[
diag

(
1

J

dri
dxj

)
Mhj

]
− E

[
A
(
JA
J

h∗j n̂j

)]
,

(32)
where parentheses represent scalar collocation of different
values with one another at the same grid point.

c) Managing aliasing error: It is well-known that Gaus-
sian quadrature on N GLL points exactly integrates a poly-
nomial of order 2(N − 1) − 1. However, the test function,
unknowns, and field variables like pressure and velocity are all
polynomials of order N−1; their products produce integrands
that may not be exactly integrated on only N points. The
functional forms of the Jacobian and the metrics also affect
how many points are needed for exact quadrature, especially
on deformed elements with curved faces. Errors from inexact
quadrature are said to “alias” onto the degrees of freedom,
and the provision of more grid points for quadrature is called
“overintegration[20]” or dealiasing.

The standard sources [16], [17], [19] on high-order methods
based on polynomials also represent polynomial interpolation
from N points represented by Equation 24 to M other points
as a product between an M ×N interpolation matrix I and
N -vectors like those in Equation 26. Avoiding the details of
such an operation, let

Iv =

 v(r1)
...

v(rM )

 (33)

be the matrix-vector product that interpolates v from N GLL
points to M > N Gauss-Legendre (GL) quadrature nodes, a
slightly different choice of nodes with quadrature weights that
can integrate polynomials of order 2M−1 exactly. Considering
a longitudinal flux of momentum (e.g., z-momentum in the z-
direction), Equation 8 says

Hz = (ρw)wg + pg = U4wg + pg. (34)

An inner product of the interpolating polynomial Equation 24
representing Hz in Equation 34 with that of the test function
gradient ∂v/∂rj would be the integral of the product of three
polynomials: U4 & w (both3 ∈ PN−1), and ∂v/∂rj ∈ PN−2.
This integrand has degree 3N − 4, and to avoid multiplicative
aliasing errors, Gaussian quadrature (Equation 25) needs each
polynomial in Equation 34 on M GL points such that 2M−1 >
3N−4. Thus, M = 3(N−1)/2 (or greater, depending on the
polynomial order of the grid metrics and Jacobian), and the
vector of grid points h3 must be formed by interpolating U4,

3w = U4/U1 is technically a rational function, but it responds favorably
to overintegration. We treat the thermodynamic pressure p as a polynomial in
spite of the nonlinearity of Equation 10.

w and p from the N -point GLL grid to the M -point GL grid,
forming

h3,M = [diag (IU4)] [Iwg] + Ipg, (35)

interpolating the metrics onto the M -point grid, and repeating
the manipulations that led from Equation 31 to Equation 32.
The first right-hand-side term in Equation 32

D>i
[

diag
(

1

J

dri
dxj

)
Mhj

]
, (36)

is replaced by

I>D>i,M
[

diag
(
I
[

1

J

dri
dxj

])
MMhj,M

]
, (37)

where the subscript M denotes the both the mass matrix
and differentiation operators that have been independently
computed for M Gauss-Legendre points.

The surface integral in Equation 32 must be re-evaluated
in the same way. The interpolation operator I is tensor-
nested; it is multiplied by a vector of point values along each
“line” of GLL points for each line in each of three directions
successively. The operator IA is the 1D GLL interpolation
matrix nested twice instead of three times, and it interpolates
grid points on an element face from a 2D plane of GLL points
to a 2D plane of Gauss-Legendre points. Likewise, we use
a diagonal matrix A, whose elements are Mij = ωiωj at a
given crossing of GLL lines, to handle quadrature for surface
integrals.

EA
(
JA
J

h∗j n̂j

)
(38)

becomes

EI>A
[
AMdiag

(
IA

JA
J

)
diag

(
h∗j,M

)
[IAn̂j ]

]
, (39)

where both the surface normal vector nj and the Jacobian ratio
JA/J have been interpolated onto the M2 GL face points.

The only remaining steps are to substitute Equations 37 and
39 into Equation 32 and multiply through by M−1 to get our
final semi-discrete system.

∂u

∂t
=M−1I>D>i,M

[
diag

(
I
[

1

J

dri
dxj

])
MMhj,M

]
−M−1EI>A

[
AMdiag

(
IA

JA
J

)
diag

(
h∗j,M

)
[IAn̂j ]

]
,

(40)

We note here that, ordinarily, inverting the mass matrix “lifts”
surface integrals into volume nodes. Under the assumptions of
spectral element methods, however, the mass matrix is diag-
onal by construction, and no lifting occurs; surface integrals
only directly affect surface nodes.


