
Towards A Programmable Analysis and Visualization
Framework for Interactive Performance Analytics

Tanzima Z. Islam
Department of Computer Science

Texas State University
tanzima@txstate.edu

Alexis Ayala, Quentin Jensen
Department of Computer Science

Western Washington University
{ayalaa2,jensenq}@wwu.edu

Khaled Z. Ibrahim
Lawrence Berkeley National Laboratory

kzibrahim@lbl.gov

Abstract—Understanding the performance characteristics of ap-
plications in modern HPC environments is becoming more chal-
lenging due to the increase in the architectural and programming
complexities. HPC software developers rely on sources such as
hardware counters and event traces to infer performance prob-
lems while focusing on designing mitigation strategies. A large
number of in-house tools exist in the community, which indicate
replicated effort. This paper presents a customizable framework
for analyzing performance measurements and visualizing through
a web-based interactive dashboard for interactively exploring
a large volume of hierarchical information. In this paper, we
analyze three applications deemed important in the Exascale
Computing Project (ECP) as use cases and identify as well as
optimize problematic resource utilization behaviors exposed by
our visualizations. This framework is a step towards a unified
platform for visual identification of performance scaling bottle-
necks to ease the collaboration between application developers,
performance analysts, and hardware vendors.
Index Terms—Performance analysis, Machine learning, Visual-
ization

I. INTRODUCTION
Modern systems include architectures with hundreds of com-
ponents (e.g., L1, L2, memory), and their complex interactions
with applications cause performance loss. These machines can
log thousands of on-core and off-core events that can explain
how an application interacts with the underlying system.
Analyzing these events can expose potential optimization op-
portunities for an application. For example, a large number of
page faults may cause a performance issue. Visual inspection
of the collected data can help expose apparent patterns that
can be useful for designing targeted analysis and optimization
strategies.
While this swell of information is undoubtedly useful, this may
leave performance analysts with overwhelming information to
investigate. A typical performance analysis workflow includes:
(1) identifying regions of interest to investigate, (2) identi-
fying how an application utilizes the underlying hardware
resources such as cache hierarchy and compute units, (3)
pinpointing actual events recorded by the hardware to gain
insight into performance problems, and (4) comparing per-
formance across workloads, applications, and configurations
(e.g., varying numbers of workers). Frequently, application
developers team up with performance analysts to develop
in-house tools written in languages such as R, Python to
wrangle the vast amount of data collected to gain insights
into performance problems quickly. The focus typically stays

on devising optimization strategies afterward to mitigate the
problems. Since the goal of the in-house analysis tools is
often quick data exploration to guide optimization, these tools
usually are not designed to be extendable by others. This
phenomenon leads to duplicated efforts of developing similar
if not the same analysis and visualization pipelines across the
HPC community.
To fill this gap, we have developed an HPC performance
analysis and visualization framework, DASHING, based on the
principles of programmability, extendability, and interpretabil-
ity of results in mind. The modular design of this Python
framework enables plugging in any analysis and visualization
techniques of choice. Specifically, in this paper, we present a
web-based visualization dashboard for interactive exploration
of hierarchical performance data. These interactive visualiza-
tions provide both coarse- and fine-grained information about
the causes of a target performance metric (e.g., efficiency loss),
and a quantitative ranking of these reasons so that a user can
prioritize their mitigation strategies. We envision that some of
these causes can be easily fixed by the application developers
(i.e. domain scientists), while others may need further engage-
ment between application developers, performance analysts
with system expertise, and vendors.
Although the types of analysis and visualizations that can be
supported by DASHING are practically unlimited, we demon-
strate the effectiveness of this framework by addressing the fol-
lowing typical performance analysis questions: (1) explain the
impact of resource utilization behaviors on performance, (2)
identify individual hardware events that can explain scalability
loss, and (3) compare two performance profiles quantitatively
across applications. Here, the term resource stands for an ar-
bitrary user-defined group of hardware performance counters.
As case studies, we analyze three ECP applications – Nyx3D,
IAMR, and INCFLO. Nyx3D is a compressible cosmolog-
ical hydrodynamics application. IAMR and INCFLO solve
incompressible Navier-Stokes equations, which are used by
combustion simulations. The INCFLO application is a much
smaller proxy application, developed to mimic the resource
utilization behaviors of IAMR. For analysis, we extended our
previous machine learning techniques [1] to provide counter
importance along with resource significance in explaining the
parallel efficiency loss as applications scale on a node.
While most works in the literature have focused on developing

70

2019 IEEE/ACM International Workshop on Programming and Performance Visualization Tools (ProTools)

978-1-7281-6026-9/19/$31.00 ©2019 IEEE
DOI 10.1109/ProTools49597.2019.00015

Authorized licensed use limited to: Texas State University. Downloaded on August 04,2024 at 05:30:42 UTC from IEEE Xplore. Restrictions apply.

novel analysis techniques, the community has recognized the
value of visualizations to aid in exploring the plethora of
collected information. Several works have developed specific
visualizations for specific problem domains [2]–[6]. In con-
trast, we aim to develop a common platform for all researchers
to easily incorporate their methodologies to serve the perfor-
mance analysis needs of the community.
The contributions of this paper are:
• A novel hierarchical visualization of how the hardware

utilization behaviors of applications impact its performance
• An easily extendable and modular framework, DASHING,

that implements several visualization techniques both novel
and widely used by the performance analysis community

• Optimization opportunities exposed by the DASHING frame-
work for three applications important for the Exascale
Computing Project (ECP)

The most notable contribution of this work is that our visual-
izations identified TLB misses being important contributors
to the efficiency loss of Nyx3D and IAMR. We mitigated
those issues by loading huge pages of 4MB on Cori. Some
performance problems observed due to the use of atomic
instructions may need more involved code refactoring, algo-
rithm change or discussion with processor vendor. With the
DASHING framework, we envision creating such engagement
opportunities for co-design among application developers,
performance analysts, and hardware vendors.
We organize the rest of the paper as follows. Section II
presents a high-level description of the analysis methodologies
used in this paper and Section III presents the overall workflow
of the DASHING framework. Sections IV and V present the
experimental setup and the observations from analyzing three
ECP applications. Finally, Section VII summarizes the paper
and indicates future research planned in this direction.

II. BACKGROUND

In this paper, we leverage two methodologies for calculating
how significantly hardware components (e.g., cache, memory)
impact the performance of applications and how well two
performance profiles match. Such performance profiles can
be collected by varying applications, workloads, or regions
within an application. We extend the analysis techniques from
our previous work [1], [7]. This section presents these two
methodologies from a high-level.
Identifying important hardware events can be formulated as a
feature selection problem in machine learning, where a number
of features (e.g., cache miss, resource stalls) can explain the
performance problems (e.g., increase in execution time) of
applications. The following sections explain the target and the
features used for our analysis.

Features: Hardware Counters and Resources On-node
performance is typically constrained by hardware bottlenecks
on the processors or in the memory system. Hence, we use
hardware performance counters to explain performance loss.
Hardware counters are registers in modern architectures that
keep track of events such as cache misses, which impact
the overall performance of applications. However, there are

hundreds of such events that can be collected via PAPI [8].
To avoid overwhelming users with fine-grained information
such as the count of each hardware event, we categorize the
events to high-level groups based on the hardware components
they affect. We refer to these high-level groups as “resources”.

Target: Performance loss This paper focuses on explaining
the performance loss of applications as they strongly scale
on a node based on their hardware component utilization
behaviors. Strong scaling is defined as increasing the number
of workers (e.g., threads, processes) while keeping the total
problem size fixed. In this paper, we define performance loss
as the loss of efficiency as an application scales (Equation 2),
since this metric impacts the final time to solution. Efficiency
loss typically increases as an application uses more cores on
a multi-core machine. Since every event (e.g, cache miss)
measured by a hardware performance counter has a non-zero
penalty, our goal is to identify those events that follow the
same scaling pattern as the efficiency loss.

efficiency loss(p) = 1− T (1)

(T (p)× p)
(1)

where p = number of workers (threads or processes) and T (p)
= execution time when using p workers.

Resource Significance Measure (RSM) This paper leverages
the machine learning approaches published in our previous
work [1], [7]. We compute the impact of resource utilization
on efficiency loss by building a linear predictive model with
the collected hardware performance counters. In particular, we
leverage the extended Orthogonal Matching Pursuit (eOMP)
algorithm presented in [1]. The eOMP algorithm builds on
the traditional OMP algorithm presented in [9], which selects
the smallest and diverse subset of counters to describe the
performance loss.
However, hardware performance counters from different hard-
ware resources can be inter-correlated, which will not be
selected by a traditional OMP algorithm. Instead, the eOMP
algorithm selects τ most correlated counters (instead of one)
and creates a discrete distribution based on their correlations,
i.e., the higher the correlation, the higher probability to be
chosen in that step. It then randomly picks a counter using
the discrete distribution, computes the residual, and repeats
this process until a desired sparsity (user defined) is met or the
model achieves sufficient fidelity. We repeat this randomized
algorithm 5000 times independently and obtain the final coeffi-
cients for counters by averaging the solutions in the ensemble.
The algorithm then computes a belief metric for each of the
counters, if they have a non-zero coefficient in the sparse
representation. The belief value is inversely proportional to
the reconstruction error of each counter. The final step com-
bines counter-wise beliefs to their corresponding resources by
obtaining the compound evidence [10].

Similarity Analysis We leverage our previous work [1], [7]
to compare the resource utilization behaviors of a pair of
applications. The comparative analysis approach computes a

271

Authorized licensed use limited to: Texas State University. Downloaded on August 04,2024 at 05:30:42 UTC from IEEE Xplore. Restrictions apply.

Processing

Analysis

Visualization

Data Loader Resource
Mapper

Performance data in text,
CSV, or HDF5 format

Dashboard

Configuration

Resource
List

Event List

Event
Description
(optional)

Resource significance

Comparative analysis

Load imbalance

Correlation

User defined
analysis

User

1

2

3 4

5

6

7

User defined
visualization

nyx:
data: ‘path_to_nyx_dataset’
tasks:
- analysis.compute_rsm #compute_rsm is implemented in analysis.py
- filename.func1 #”func1” is a user defined function in filename.py
- viz.sunburst # sunburst implemented in viz.py
- viz.heatmap # heatmap implemented in viz.py

nyx_hugepages:
data: ‘path_to_nyx_hugepages_dataset’
tasks:

- analysis.compute_rsm
- filename.func2 #”func2” is a user defined function in filename.py
- viz.sunburst
- viz.linechart

main: #macro-task that contains several micro-tasks
tasks: #List of micro tasks
- nyx
- nyx_hugepages

compatibility_score: #List of regions to compare
- nyx::strang_hydro vs nyx_hugepages::strang_hydro #

micro_task_id::region_name is used to refer to a region within a dataset for
comparison

- nyx::region2 vs nyx_hugepages::region3 # multiple regions can be compared
at once

(a) Workflow (b) Example of a configuration file

HDF5 "perf-dump.32.h5" {
GROUP "/" {

GROUP “Region1" {
DATASET “Counter1" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (32, 1, 2) / (32, 1, H5S_UNLIMITED) }

}
DATASET “Counter2" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (32, 1, 2) / (32, 1, H5S_UNLIMITED) }

}
}
GROUP “Region2" {
DATASET “Counter1" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (32, 1, 2) / (32, 1, H5S_UNLIMITED) }

}
DATASET “Counter2" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (32, 1, 2) / (32, 1, H5S_UNLIMITED) }

}
}

}

(c) Example data model from the Perf-dump tool

Fig. 1: (a) Workflow of the DASHING framework. The dotted boxes represent points of interaction between users and the
framework for leveraging DASHING for other use cases (b) Example configuration file with hierarchical structure.

distance between the two feature spaces defined by the set
of performance counters. From high-level, the methodology
computes (1) the low-dimensional projections (PCA) of the
performance subspaces (d principle directions), (2) measures
the principle angles between each of the principle directions
(θi along direction i), and (3) the distance between the distribu-
tions (λi along direction i) of the collected performance data.
Then the compatibility score of a resource (r) is computed as:

compatibility score(r) = 1− 1

d

∑
i

θiλi (2)

III. APPROACH & FRAMEWORK

This paper focuses on presenting visualizations for ana-
lyzing application performance in a modular framework—
DASHING—that is easy to extend. The visualizations are
interactive and can guide users to (1) correlate the utilization
of the hardware components to the performance loss of an
application as it scales, (2) identify hardware events that can
explain efficiency loss, and (3) enable quantitative comparison
of the performances between two applications. In the context
of performance analysis, we refer both application developers
(i.e., domain scientists) and performance analysts with system
expertise as users. Figure 1 presents the overall workflow of
the DASHING framework, which mainly performs three tasks:
(1) Processing (2) Analysis and (3) Visualization. This section
describes the components that implement these tasks and the
end-to-end use of the framework in details.
A. Processing
Figure 1a shows that a user initiates the use of the DASHING
framework by writing a configuration file (step 1) where the
configuration file describes (step 2) which analysis, visualiza-
tion, data loader, and resource mappers to use when processing
data.
Data Loader: The processing task starts with reading data
from the performance files (step 3) collected from various
measurement tools and converting those into a Python dic-

tionary. Performance measurement tools write data in dif-
ferent formats such as HDF5, Comma Separated Values
(CSV), and plaintext. Figure 1c presents an example HDF5
file format that the DASHING framework expects. Each re-
gion in the HDF5 file corresponds to a group and each
counter for a specific region corresponds to a dataset in that
group. For each counter, each entry is present as a tuple <
process id, thread id, repetition id >, where process id
denotes a process id, thread id denotes a thread id within the
process id and repretition id denotes a specific repetition
of the region. The DASHING framework can be extended to
read output from other tools as long as the data is formatted
into CSV. The CSV must be formatted such that each column
denotes a region and each row denotes a performance counter.
Each entry pertaining to a region and a counter is a list of
floats delimited by commas. These values denote the average
counter value over several repetitions (if applicable) for each
< process id, thread id > used to run the application. For a
purely multi-processed application, thread id can be assumed
to be 1, whereas a purely multi-threaded application, the
process id can be assumed to be 1. To read files in user-
defined format, a performance analyst needs to write a Python
function to read data to a Python dictionary and return that
dictionary.

Resource Mapper: The resource_mapper module reads
the event-to-group mapping (step 4) from a user provided CSV
file or calls a user-defined function to map hardware events
(or features) to resources (groups). In this work, we leverage
the event-to-resource mapping function developed from our
previous work [1] to categorize the hardware events on Cori.
Table I presents the resource groups used in this work for the
Intel Haswell architecture.
B. Analysis
The analysis module essentially is a wrapper that it-
erates through a list of analysis functions received from

372

Authorized licensed use limited to: Texas State University. Downloaded on August 04,2024 at 05:30:42 UTC from IEEE Xplore. Restrictions apply.

the processing module (step 5) written in Python. This
function pointer based method enables users to perform any
analysis of their choice, as long as the return value is a Python
dictionary of structure < key1, key2, key3 >→ value. In this
paper, the tuple represents < region, resource, event >→
importance. The two analysis methodologies used in this
work address the following research questions: (1) which
regions in an application constitute the largest run time, (2)
which hardware resource utilization can explain the efficiency
loss curve as an application scales on a node, (3) which
resource utilization behaviors match between two applications.
For addressing the first question, the DASHING framework
uses execution times to rank regions of interest. For addressing
the second and the third questions, the DASHING framework
builds on the machine learning techniques presented in our
previous work [1], [7]. A high-level overview of the methods
is presented in Section II.
C. Visualization
The visualization module is responsible for visually
representing the output from different analysis (step 6) into
a web-based dashboard. The goal of these visualizations is
to present hierarchical information in an interactive manner.
The DASHING framework provides detailed meaning of each
performance event along with any known optimization tech-
niques as a tool tip text for each event. This description of each
event, provided through the configuration file, contains
< eventname, description > pairs for each event. Since the
tool will be made available on Github to the community, we
envision both system analysts and architects can per take in
enhancing this tool by annotating the event description files,
written in the CSV format.
While the processing, analysis, and visualization tasks are
performed from a command-line tool, the visualization
module opens up the interactive visualizations in a web
browser. Currently, users can interact with the visualizations
alone (step 7), after an analysis is run on the entire dataset. In
future, we plan to support interactivity between the web-based
dashboard and the analysis module so that users can run new
analysis on a selected part of the dataset.
With the goal of easy interpretability, we have created several
visualizations corresponding to several commonly performed
analysis tasks. This list of visualizations present information
from a coarse to fine-grained level:
1) Heat map (Figures 3a, 3b)
compares the RSM scores of resources per region, giving a
broad overview about which resources are heavily used by
which regions. This summary visualization provides a quick
way for comparing the resource utilization behaviors across
all annotated regions while abstracting away a lot of details.
2) Sunburst (Figure 2[a-d])
presents a large amount of hierarchical information in a visu-
ally intuitive manner. Each section of each circle represents its
relative cost to its parent. Each section is clickable, expanding
that section to fill the whole chart (Figures 2b, 2c). A single
sunburst chart represents an application. Moving outwards, the
next circle represents the contribution of each region to the

overall execution time of the application. Then, the importance
of each resource that contributes to explaining the efficiency
loss of its parent region. Finally, the importance of each
hardware counter that contributes to its respective resource.
In this fashion, a user can quickly identify what regions of
code are high-cost, and then zoom in on why. This coarse-
to-fine grained visualization is powerful in its ability to help
a user discover specific ways to optimize their code. The
tool shows only significant events attributed to efficiency loss,
down-selecting from hundreds of system events.
3) Interactive line chart (Figure 2e)
shows the values of hardware counters normalized within a
region, as an application scales. Each line is colored by its
resource, shown alongside the region’s efficiency loss curve
(bold black). Counters that follow the efficiency loss curve
tightly are likely to explain why the efficiency loss occurred.
This visualization enables users to investigate the trends in
events compared to the trend in the target variable (e.g.,
efficiency loss).
4) Scatter plot (Figure 3e):
showcases the comparison between two performance profiles.
The X axis shows the RSM scores for the first application, and
the Y axis shows how well the second application mimics the
resource utilization behaviors of the first one. A lower value of
compatibility indicates greater dissimilarity between the two
performance profiles. This visualization was proposed in our
previous work [1] and has been integrated in the DASHING
framework.
Although, the Sunburst chart can present a comparative view
of the resource utilization across regions, it is more suitable
for a hierarchical view of the performance characteristics of a
single region. In contrast, the heat map is more suitable for a
summarized view of the resource utilization behaviors across
regions. Hence, the DASHING framework includes both.
D. Configuration
DASHING provides a simple configuration file-based approach
to execute and extend DASHING. The configuration file is writ-
ten in YAML. The configuration file is organized as a hierarchy
of tasks. We assume that performance data is collected for
code regions (e.g., function) and is organized under a name
(region name). This organization enables several regions in
the same application to be collected and analyzed at once.
It is written in Python 3.7, hence programmable. The com-
mand line invocation of DASHING is: python driver.py
config.yaml.
Figure 1b shows an example configuration file for generating
Figures 2[a-e]. The fields in red (data and tasks) describe
keywords, and the items under the tasks are functions to
apply on the data. To extend DASHING, users can enlist
their Python function names under tasks (e.g., func1,
func2). If the task pertains to a specific dataset, then it
should be listed under a micro task (e.g., compute_rsm on
Nyx3D data). The main task provides access to all datasets
(i.e., micro tasks). Hence, tasks to analyze across several
datasets should be enlisted under main. For example, the
compatibility_score is computed between two regions

473

Authorized licensed use limited to: Texas State University. Downloaded on August 04,2024 at 05:30:42 UTC from IEEE Xplore. Restrictions apply.

Resource Group on Intel Haswell ID
Prefetcher PRE
Floating point unit FP
Branch instruction and prediction units BR
L1 cache L1
L2 cache L2
L3 cache L3
Offcore events OFF
Micro operations UOPS
Front-end FE
Non-floating point arithmetic unit ARITH
Atomic events ATOMIC
Translation look aside buffer TLB
Memory MEM
Events to prune UNDEFINED

TABLE I: Resource groups on Cori
in two datasets. These regions are accessed by specifying
their micro task names, a ”::” operator, and the region names
after that (e.g., nyx::strang_hydro where Nyx3D is the
micro task name and strang_hydro is the region name). In
the future, we will make the configuration editing capability
available via the web-based dashboard itself to reduce the
adoption barrier to application developers and increase their
productivity.

IV. EXPERIMENTAL SETUP

In this section, we describe the system and applications we
use to demonstrate the use cases of the DASHING framework.
For all applications, we used the sparsity parameter to be 3
(as was found to be sparse enough in our previous work [1]).
A. System Description
We ran our experiments on Cori [11], a Cray XC40 supercom-
puter with 29.5 Petaflop/s peak performance. Cori consists of
2, 388 Intel Xeon E5-2698 (Haswell) and 9, 688 Intel Xeon Phi
7200 (Knights Landing) processors. Each Haswell compute
node has two sockets, each socket has 16 cores with 36.8
Gflops/core and 128 GB memory. Each core has its own
L1 and L2 caches, with 64 KB (32 KB instruction cache,
32 KB data) and 256 KB, respectively; there is also a 40-
MB shared L3 cache per socket. In this paper, we present
experimental results on the Intel Haswell nodes only. Table I
presents the hardware resources on Cori. We collected more
than 200 hardware counters and categorized them based on
the open source PMU tools project [12] for Intel CPUs. We
leave performance analysis on the Intel Xeon Phi processors
for future work.
B. Applications
Nyx3D is an adaptive mesh, compressible cosmological hy-
drodynamics simulation code that leverages the AMReX
framework. The application is written using a combination
of Fortran 2003 and C++11 with parallelism supported by a
hybrid MPI+OpenMP model [13]. Nyx3D solves equations
of compressible hydrodynamics on an adaptive grid hierarchy
coupled with an N-body treatment of dark matter.

IAMR is a parallel, adaptive mesh refinement (AMR) code
that solves the variable-density incompressible Navier-Stokes
equations. The IAMR source code can be found at [14].

INCFLO [15] is a proxy application similar in purpose to

IAMR, but has a simplified code base. INCFLO has been de-
veloped to only capture the computation and the performance
characteristics of the advection, diffusion, and projection oper-
ations for solving the incompressible Navier-Stokes equations
(implemented in the advance method) in its much larger
counterpart, IAMR.

V. RESULTS
In this section, we present the effectiveness of DASHING
visualizations using three ECP applications. We collected
the hardware performance counters for the three applications
Nyx3D, IAMR, and INCFLO using the Perf-dump [16] tool.
Due to page limit, we only present a subset of these visualiza-
tions to demonstrate the usability of the developed framework.
Specifically, we present the following visualizations for an-
swering common questions asked during a typical performance
analysis phase:
• Heat map: Comparison of the resource utilization behaviors

across regions
• Sunburst: Comparison of the execution times, resource im-

portance, and contributing hardware events as well as their
importance

• Interactive line chart: Comparison of the features (e.g., hard-
ware performance counters) with the target (e.g., execution
time, efficiency loss) across various configurations (e.g.,
varying number of workloads, workers)

• Scatter plot: Comparison of resource utilization between
two performance profiles. These profiles can be collected
by varying workloads of the same application, or different
regions, or even different applications.

The following section presents specific examples on how
these visualizations can help both application developers and
vendors identify performance optimization opportunities in
applications.
A. Nyx3D
In this section, we present the resource utilization behaviors
of 19 annotated regions in Nyx3D. We identified these regions
through hot spot analysis using the Craypat-lite [17] tool. The
main region represents the rest of the methods in the Nyx3D
application that we did not explicitly annotate (i.e., not the
main method itself).
Figure 2a shows the breakdown of the overall performance
of Nyx3D, 2b filters by a region, and 2c filters by a re-
source. Tool tip text (not shown in figure) shows the numeric
importance values and execution times of the regions. All
regions, resources, and events are sorted based on their values
(e.g., execution times, importance) and organized in counter-
clockwise manner.
The observations that can be made from Figure 2 are:
• strang_hydro explains 65% of the overall execution

time, hence the most important region to optimize. The
specific value (65%) is presented as a tool tip text when
users hover over that region (not shown in figure).

• TLB is the most important resource that can explain 43%
of the efficiency loss curve as Nyx3D scales on a node.

• Figure 2c shows that DTLB (Data TLB) misses cause a
large number of walks that can be optimized by using huge

574

Authorized licensed use limited to: Texas State University. Downloaded on August 04,2024 at 05:30:42 UTC from IEEE Xplore. Restrictions apply.

1 2 4 8 12 16 20 24 28 32

0

0.2

0.4

0.6

0.8

1 Efficiency Loss

DTLB_STORE_MISSES:WALK_COMPLETED

ITLB:ITLB_FLUSH

TLB_FLUSH:STLB_ANY

IDQ:MS_UOPS

ILD_STALL:LCP

LOCK_CYCLES:SPLIT_LOCK_UC_LOCK_DURATION

MEM_LOAD_UOPS_L3_HIT_RETIRED:XSNP_HIT

MEM_LOAD_UOPS_L3_HIT_RETIRED:XSNP_HITM

MEM_LOAD_UOPS_L3_MISS_RETIRED:REMOTE_HITM

Nyx::strang_hydro()

Number of Processes

N
or

m
al

iz
ed

 E
ve

nt
 C

ou
nt

1 2 4 8 12 16 20 24 28 32

0

0.2

0.4

0.6

0.8

1

Nyx::strang_hydro()

Number of Processes

No
rm

al
ize

d
Ev

en
t C

ou
nt

1 2 4 8 12 16 20 24 28 32

0

0.2

0.4

0.6

0.8

1 Efficiency Loss

DTLB_STORE_MISSES:WALK_COMPLETED

ITLB:ITLB_FLUSH

TLB_FLUSH:STLB_ANY

IDQ:MS_UOPS

ILD_STALL:LCP

LOCK_CYCLES:SPLIT_LOCK_UC_LOCK_DURATION

MEM_LOAD_UOPS_L3_HIT_RETIRED:XSNP_HIT

MEM_LOAD_UOPS_L3_HIT_RETIRED:XSNP_HITM

MEM_LOAD_UOPS_L3_MISS_RETIRED:REMOTE_HITM

Nyx::strang_hydro()

Number of Processes

N
or

m
al

iz
ed

 E
ve

nt
 C

ou
nt

Clicked on STALL
and ATOMIC groups
only

(a) Overall (b) strang_hydro (c) TLB in stang_hydro (d) With hugepages=4M

(e) Line charts for Nyx3D strang_hydro

Fig. 2: [a-d] Interactive graph for Nyx3D shows that ATOMIC, TLB, and Instruction stalls are the three major groups to
optimize for the most expensive region, strang_hydro. [e] Interactive line chart shows the comparison of the normalized
values of the features (e.g., hardware performance counters) to a target variable (e.g., the efficiency loss). Clicking on an event
in the legend toggles a group.

pages.
• Figure 2d shows that using 4M huge pages on Cori indeed

reduces the impact of TLB misses on the performance of
Nyx3D (reduced from 11% to 3%).

• Figures 2a and 2d also show that ATOMIC instructions
cause the efficiency loss to increase, which may require
application developers to engage with the vendors to discuss
potential optimizations.

Figure 2e shows a comparison of the normalized values of the
hardware performance counters and the efficiency loss of each
region as the application scales. The bold black line indicates
the efficiency loss of the region as it scales on more workers,
and the individual lines correspond to each important event.
Hardware events are filtered by their importance to declutter
the visualizations. Users can set the threshold to an arbitrary
low value (e.g., zero) to control the density of information.
B. INCFLO
We ran INCFLO with multiple input sizes. The number of cells
parameter was varied from 323(small), 643(medium), and
1283(large). Due to the page limit, we only present a subset
of the visualizations. These results clearly expose potential
opportunities for optimizing the performance of the INCFLO
application across multiple regions.
Figures 3a and 3b show the resource utilization behaviors
across three regions annotated within the INCFLO application
for the small and large problem sizes, respectively. From
Figure 3a and 3b, we can observe that while TLB is an
important resource across all the regions for the small input

size, ATOMIC is important for the large one. From Figure 3c,
we can observe that a large number of TLB store misses
contribute to the increase in efficiency loss, which can be
optimized by using hugepages.

C. IAMR

The DASHING framework similarly analyzes and visualizes
the performance characteristics of the IAMR application. Due
to page limit, we only present the comparative analysis results
between IAMR (n cell = 323) and INCFLO (n cell = 323,
643, and 1283). The INCFLO application has been developed
to capture the advection, diffusion, and projection tasks for
solving the incompressible Navier-Stokes equations. In this
section, we only present a comparison between the perfor-
mance characteristics of the advance methods (implement-
ing all three of the tasks mentioned above) in both of these
applications. Figure 3e shows the comparison between IAMR
with workload 323 and INCFLO with workloads 323 and 1283.
The X axis shows the resource significance measure for IAMR.
Higher values mean a greater importance to cover. The Y axis
shows the compatibility score; higher values mean a more
similar behavior.

From Figure 3e we can observe that MEM is the most
important resource for IAMR, however INCFLO with the
small input size (Figure 3e-left) does not cover the behavior
well. In this work, we deem a compatibility score of 0.8 or
higher as a good match (shown using red dotted horizontal
line). On the other hand, the MEM utilization behavior for
INCFLO with the large input size (Figure 3e-right) covers

675

Authorized licensed use limited to: Texas State University. Downloaded on August 04,2024 at 05:30:42 UTC from IEEE Xplore. Restrictions apply.

AR
IT

H

AT
O

M
IC BR

CY
CL

E FE FP IN
T L1 L2 L3

M
EM O
FF

PR
E

ST
AL

L

TL
B

U
O

PS

MLEBABecLap::Fsmooth()

main

incflo::Advance

0

20

40

60

80

100
RSM Score

Incflo_32

Resource

Re
gi

on

(a) Incflo with small input

AR
IT

H

AT
O

M
IC BR

CY
CL

E FE FP IN
T L1 L2 L3

M
EM O
FF

PR
E

ST
AL

L

TL
B

U
O

PS

MLEBABecLap::Fsmooth()

main

incflo::Advance

0

20

40

60

80

100
RSM Score

Incflo_128

Resource

Re
gi

on

(b) Incflo with large input

Incflo_128

inc
flo
::A
dv
an
ce

main

M
LE
BA

Be
cL
ap
::F
sm

oo
th
()

TLB

STALL

ATOMIC
TLB

ATOMIC

STALL

FE

CYCLE

INT
OFFCORE

ATOMIC

TLB

TLB_FLUSH:STLB_ANY

DT
LB
_S
TO
RE
_M
ISS
ES
:W
AL
K_
DU
RA
TIO

N

D
TLB_LO

AD
_M

ISSES:PD
E_CACH

E_M
ISS

PAGE
_WAL

KER_L
OADS

:DTLB
_L3

ITLB:
ITLB_

FLUS
H

DTLB
_LOA

D_M
ISSES

:WAL
K_DU

RATI
ON

PAGE_W
ALKER_

LOADS
:DTLB_

L2

ILD_STALL:LCP

LOCK_CYCLES:SPLIT_LOCK_UC_LOCK_DURATION
DTLB_STORE_MISSES:WALK_DURATION

D
TLB_LO

AD
_M

ISSES:W
ALK_D

U
RATIO

N
TLB_FLU

SH
:STLB_AN

Y LOC
K_C

YCL
ES:S

PLIT
_LO

CK_
UC_

LOC
K_D

URA
TIO

N

ILD_STALL:LCP

ITLB_MISSES:WALK_DURATION

IDQ:MS_UOPS

IDQ_UOPS_NOT_DELIVERED:CORE

INT_MISC:RECOVERY_CYCLES

OFFCORE_REQUESTS:DEMAND_CODE_RD OFFCORE_REQUESTS_OUTSTANDING:ALL_DATA_RD

LO
CK
_C
YC
LE
S:
CA
CH

E_
LO

CK
_D
U
RA
TI
O
N

DTLB_STORE_MISSES:PDE_CACHE_MISS

PAGE_WALKER_LOADS:DTLB_L2

DTLB_LOAD_MISSES:WALK_DURATION
PAGE_WALKER_LOADS:DTLB_L1

DTLB_LOAD_MISSES:PDE_CACHE_MISSDTLB_LOAD_MISSES:WALK_COMPLETED

(c) Overall performance characteristics for IN-
CFLO with n cell = 1283

IAMR_32

NavierStokes::advance()

main

MLABecLaplacian
::Fsmooth()

M
LN
od
eL
ap
la
cia
n:
:F
sm
oo
th
()

Amrex::MLCellLinOp::applyBC

ABecLaplacian::compFlux()

MEM

STALL

TLB
UOPS

L1
FECYCLEARITH

BR

ATOMIC

ST
AL
L

STALL

ATO
M
IC FE CYCLE

UOPS

ATOMIC

STALL

FE

STALL

UOPS
ATOMIC

ATOMIC

M
EM

_LOAD_UOPS_L3_HIT_RETIRED:XSNP_HITM

MEM_LOAD_UOPS_L3_HIT_RETIRE
D:XSNP_HIT

ILD_STALL:LCP

RESOURCE_STALLS:ROB

LD_BLOCKS_PARTIAL:ADDRESS_ALIAS

DTLB_LOAD_MISSES:WALK_DURATION

DTLB_LOAD_MISSES:PDE_CACHE_MISS

TLB_FLUSH:STLB_ANY

MOVE_ELIMINATION:SIMD_NOT_ELIMINATED

MOVE_ELIMINATION:SIMD_ELIMINATED

MOVE_ELIMINATION:INT_NOT_ELIMINATED

L1D_PEND_MISS:FB_FULL

ICACHE:IFETCH_STALL

L1D_PEND_MISS:PENDING_CYCLES

BR
_I
N
ST
_E
XE
C:
AL
L_
IN
D
IR
EC
T_
N
EA
R_
RE
TU

RN

BR_INST
_RETIRED

:NEAR_C
ALL

BR_I
NST_

RETI
RED

:NEA
R_RE

TUR
N

BR_
INS

T_E
XEC

:AL
L_D

IRE
CT_

NEA
R_C

ALL

BR
_IN
ST_

EX
EC
:AL
L_D

IRE
CT
_JM

P

BR
_IN
ST
_EX

EC
:AL
L_C

ON
DIT

ION
AL

LOCK_CYCLES:SPLIT_LOCK_UC_LOCK_DURATION

LD
_B
LO
CK
S_
PA
RT
IA
L:
AD

DR
ES
S_
AL
IA
S

ILD_STALL:LCP

ILD_STALL:LCP

LD_BLO
CKS:N

O
_SR

RESO
URCE_STALLS:RO

B

LO
CK_CYCLES:CACHE_LO

CK_DURATIO
N

ICACHE:IFETCH_STALL
RS_EVENTS:EM

PTY_CYCLES
RS_EVENTS:EMPTY_END

UOPS_EXECUTED:STALL_CYCLES

M
OV
E_
EL
IM
IN
AT
IO
N:
SIM

D_
NO
T_
EL
IM
IN
AT
ED

UOPS_ISSUED:FLAGS_MERGE

LOCK_CYCLES:CACHE_LOCK_DURATION

ILD_STALL:LCP
LD_BLOCKS:STORE_FORWARD

RS_EVENTS:EMPTY_CYCLES

LD_BLOCKS:NO_SR

UOPS_ISSUED:FLAGS_MERGE

LOCK_CYCLES:CACHE_LOCK_DURATION

LOCK_CYCLES:CACHE_LOCK_DURATION

(d) Overall performance characteristics for
IAMR

ARITH, FP, L2, PRE

ATOMIC, CYCLE

BR, L1, UOPS

FE
L3

MEM

OFF

STALL

TLB

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iamr-NavierStokes::advance() versus. incflo_32-incflo::Advance

ARITH, ATOMIC, CYCLE, FE, FP, L2, L3, PRE, UOPS

BR, L1

MEM

OFF

STALL

TLB

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iamr-NavierStokes::advance() versus. incflo_128-incflo::Advance

C
om

pa
tib

ilit
y

Sc
or

e

Resource Significance Measure

Good match

Poor match

(e) Comparison between IAMR and INCFLO n cell = 323 and 1283

Fig. 3: (a) and (b) Comparison of resource utilization behaviors across regions. (c) Overall performance shows TLB is the
most important resource. Application developers may use the hugepages to improve the performance of INCFLO when using
a large workload. (d) MEM is the most important resource for IAMR. (e) Comparison between IAMR and INCFLO with two
workloads (small and large).

that of IAMR well. This surprising observation indicates that
further investigation is needed to ensure that INCFLO mimics
IAMR.

VI. RELATED WORK

ParaProf [18], Tau [19], YAViT [20], HPCToolKit [21] are
widely used HPC tools that provide integrated analysis and
supporting visualizations for identifying performance bottle-
neck in applications. While these are massive tools with a
large user base, they often lack the flexibility of a simple
Python framework for interactive exploration of the collected
data. While the Caliper [22] tool shares our aim of com-
bining multiple data sources, the interactive visualizations
presented in this work are complementary to Caliper’s focus
on providing a scalable data model for performance analysis
tasks. Visualizations of supercomputer networks [2], network
traffic [23], scalability trend [3], job placements [24], power
consumption [25], flops visualization for threads [5], commu-
nication [26] are great examples of targeted visualizations that
have been developed by the community. All of these works
focus on developing intuitive visualizations for presenting data

for a specific problem. In contrast, we envision that this
work will lead to the development of a unified programmable
framework for all HPC performance analysis and visualization
needs.

PaScal [3] is a visualization tool for studying scalability
of applications, a goal similar to our own. Performance
monitoring and visualization dashboard in [27] focuses on a
system for collecting cluster health statistics and visualizing
a large volume of data. This system comes equipped with a
large number of components that enable real time monitor-
ing, data collection in addition to visualization. Furthermore,
there are works on visualizing calling contexts [28], memory
performance behaviors [4], and frameworks for projecting
performance data over simulation geometry [6]. While the
visualizations are useful, none of the work aims at providing
a unified framework for all analysis and visualization needs of
the HPC performance community. In that regard, these analysis
and visualization techniques are complementary to our work.

776

Authorized licensed use limited to: Texas State University. Downloaded on August 04,2024 at 05:30:42 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSION
This paper presents a novel visualization framework for pre-
senting hierarchical information about application performance
and identifying critical resources limiting scaling efficiency.
Our framework introduces an interactive web-based dashboard
that implements several performance visualization methods
that can be useful for application developers, performance
analysts, and system vendors alike.
Although DASHING is written in Python, the visualization
dashboard can be integrated in a Cloud instance for providing
interactive exploration of the performance dataset. Such a
tool can enable collaboration across multiple research labs,
academics, and vendors to share data without overwhelm-
ing users with raw data. The DASHING framework supports
programmability through a configuration file, extendability
through function pointers, and interpretability through inter-
active visualizations, for which we plan to provide on-the-fly
customization in the future.
We will also continue to add more visualizations to the
DASHING framework, so that one can fully configure the axes
from the configuration file to invoke any of the functions. We
would also like to support visualization for correlations across
the performance counters in a meaningful way so that the ones
that are always correlated can be identified. This list can be
used to filter the number of hardware performance counters
that need to be collected.

ACKNOWLEDGMENT
This research used resources in Lawrence Berkeley National
Laboratory and the National Energy Research Scientific Com-
puting Center, which are supported by the U.S. Department
of Energy Office of Science’s Advanced Scientific Com-
puting Research program under contract number DE-AC02-
05CH11231.

REFERENCES
[1] T. Z. Islam, J. J. Thiagarajan, A. Bhatele, M. Schulz, and T. Gamblin, “A

machine learning framework for performance coverage analysis of proxy
applications,” in SC’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2016, pp. 538–549.

[2] S. Cheng, W. Zhong, K. E. Isaacs, and K. Mueller, “Visualizing
the topology and data traffic of multi-dimensional torus interconnect
networks,” IEEE Access, vol. 6, pp. 57 191–57 204, 2018.

[3] F. d. A. Alex and S. Xavier-de Souza, “Pascal viewer: A tool for
the visualization of parallel scalability trends,” in Programming and
Performance Visualization Tools: International Workshops, ESPT 2017
and VPA 2017, Denver, CO, USA, November 12 and 17, 2017, and
ESPT 2018 and VPA 2018, Dallas, TX, USA, November 16 and 11,
2018, Revised Selected Papers. Springer, p. 250.

[4] A. Giménez, T. Gamblin, I. Jusufi, A. Bhatele, M. Schulz, P.-T. Bremer,
and B. Hamann, “Memaxes: visualization and analytics for character-
izing complex memory performance behaviors,” IEEE transactions on
visualization and computer graphics, vol. 24, no. 7, pp. 2180–2193,
2017.

[5] R. Brendel, B. Wesarg, R. Tschüter, M. Weber, T. Ilsche, and S. Oeste,
“Generic library interception for improved performance measurement
and insight,” in Programming and Performance Visualization Tools.
Springer, 2017, pp. 21–37.

[6] C. Wood, M. Larsen, A. Gimenez, K. Huck, C. Harrison, T. Gam-
blin, and A. Malony, “Projecting performance data over simulation
geometry using sosflow and alpine,” in Programming and Performance
Visualization Tools. Springer, 2017, pp. 201–218.

[7] J. J. Thiagarajan, R. Anirudh, B. Kailkhura, N. Jain, T. Z. Islam,
A. Bhatele, J.-s. Yeom, and T. Gamblin, “Paddle: Performance analysis

using a data-driven learning environment,” in 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), May 2018, pp.
784–793.

[8] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface
to hardware performance counters,” in Proceedings of the department of
defense HPCMP users group conference, vol. 710, 1999.

[9] A. M. Bruckstein, M. Elad, and M. Zibulevsky, “On the uniqueness of
nonnegative sparse solutions to underdetermined systems of equations,”
IEEE Transactions on Information Theory, vol. 54, no. 11, pp. 4813–
4820, 2008.

[10] I. Bloch, “Some aspects of dempster-shafer evidence theory for classi-
fication of multi-modality medical images taking partial volume effect
into account,” Pattern Recognition Letters, vol. 17, no. 8, pp. 905–919,
1996.

[11] L. B. N. Laboratory, “Nersc’s cray xc40 supercomputer,”
https://www.nersc.gov/users/computational-systems/cori/.

[12] “Pmu-tools: A collection of tools for profile collection and
performance analysis on intel cpus on top of linux perf,”
https://github.com/andikleen/pmu-tools.

[13] L. B. N. Laboratory, Nyx: An Adaptive Mesh, Massively-parallel,
Cosmological Simulation Code, https://github.com/AMReX-Astro/Nyx.

[14] ——, “Iamr: A parallel, adaptive mesh refinement (amr) code that
solves the variable-density incompressible navier-stokes equations,”
https://github.com/AMReX-Codes/IAMR.

[15] ——, “Incflo: An amrcore-based code that solves the incompressible
navier-stokes equations,” https://github.com/AMReX-Codes/incflo.

[16] L. L. N. Laboratory, Perf-dump: A tool for collecting PAPI
counter values per-process, per-thread, and per-timestep,
https://github.com/scalability-llnl/perf-dump.

[17] C. Inc., Craypat-lite: Cray Performance Measurement and Analysis
Toolset, 2016, https://pubs.cray.com/content/S-2376/7.0.0/cray-
performance-measurement-and-analysis-tools-user-guide/craypat-lite.

[18] R. Bell, A. D. Malony, and S. Shende, “Paraprof: A portable, extensible,
and scalable tool for parallel performance profile analysis,” in European
Conference on Parallel Processing. Springer, 2003, pp. 17–26.

[19] S. S. Shende and A. D. Malony, “The tau parallel performance system,”
The International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 2006.

[20] O. Aaziz, U. Panthi, and J. Cook, “Yavit (yet another viz tool): Raising
the level of abstraction in end-user hpc interactions,” in 2017 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE,
2017, pp. 814–817.

[21] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: Tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[22] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez,
M. LeGendre, O. Pearce, and M. Schulz, “Caliper: performance intro-
spection for hpc software stacks,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE Press, 2016, p. 47.

[23] H. Bhatia, N. Jain, A. Bhatele, Y. Livnat, J. Domke, V. Pascucci, and
P.-T. Bremer, “Interactive investigation of traffic congestion on fat-tree
networks using treescope,” in Computer Graphics Forum, vol. 37, no. 3.
Wiley Online Library, 2018, pp. 561–572.

[24] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: performance degradation due to nearby jobs,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, p. 41.

[25] S. Labasan, M. Larsen, H. Childs, and B. Rountree, “Paviz: A
power-adaptive framework for optimizing visualization performance.”
in EGPGV, 2017, pp. 1–10.

[26] P. C. Roth, “Improved accuracy for automated communication pattern
characterization using communication graphs and aggressive search
space pruning,” in Programming and Performance Visualization Tools.
Springer, 2017, pp. 38–55.

[27] T. Dang, “Visualizing multidimensional health status of data centers,”
in Programming and Performance Visualization Tools. Springer, 2017,
pp. 273–283.

[28] A. Bergel, A. Bhatele, D. Boehme, P. Gralka, K. Griffin, M.-A. Her-
manns, D. Okanović, O. Pearce, and T. Vierjahn, “Visual analytics
challenges in analyzing calling context trees,” in Programming and
Performance Visualization Tools. Springer, 2017, pp. 233–249.

877

Authorized licensed use limited to: Texas State University. Downloaded on August 04,2024 at 05:30:42 UTC from IEEE Xplore. Restrictions apply.

