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Abstract—Proxy applications are written to represent subsets
of performance behaviors of larger, and more complex applica-
tions that often have distribution restrictions. They enable easy
evaluation of these behaviors across systems, e.g., for procure-
ment or co-design purposes. However, the intended correlation
between the performance behaviors of proxy applications and
their parent codes is often based solely on the developer’s
intuition. In this paper, we present novel machine learning
techniques to methodically quantify the coverage of performance
behaviors of parent codes by their proxy applications. We have
developed a framework, VERITAS, to answer these questions
in the context of on-node performance: a) which hardware
resources are covered by a proxy application and how well, and
b) which resources are important, but not covered. We present
our techniques in the context of two benchmarks, STREAM
and DGEMM, and two production applications, OpenMC and
CMTnek, and their respective proxy applications.

Index Terms—Machine learning, Unsupervised learning, Per-
formance analysis, Scalability

I. INTRODUCTION

As we move towards exascale, it has become important to
take application characteristics into account when designing
the hardware architecture and vice versa. This approach re-
quires an agile co-design loop with hardware architects, system
software developers and domain scientists working together
to make informed decisions about features and tradeoffs in
the design of applications, algorithms, the underlying system
software, and hardware.

Ideally, all co-design efforts would be driven by perfor-
mance measurements directly based on the targeted production
applications. However, those applications are often too large
or too complex to setup to be used in early design studies,
or have distribution restrictions. On the other hand, traditional
benchmark suites such as NAS [1] cover a number of pop-
ular parallel algorithms but do not include modern adaptive
methods such as Monte Carlo or discrete ordinates. This has
led to the widespread development of proxy applications to
better characterize the performance of complex production
applications [2], [3], [4], [5].

Proxy applications are typically developed to capture spe-
cific performance-critical modules in a production application.
By retaining the parent application’s behavior, they offer
convenience and flexibility to analyze performance without
requiring the time, effort and expertise to port or modify
production codes. Typically, the proxy emulates certain com-
putational aspects of the parent such as specific implementa-
tions of an algorithm or performance aspects such as memory

access patterns. Proxy applications are comparatively small in
size, easy to understand, and are typically publicly available
for the community to use. For example, XSBENCH is a
proxy application for OPENMC that implements a number of
random indirect array lookup operations to compute neutron
cross-section on a one-dimensional array [3]. However, the
corresponding kernel in OPENMC implements a number of
additional operations to compute these indices [6]. This poses
the following questions – (a) do the two applications have the
same performance behavior on a target architecture? and (b)
which performance behaviors are different between them?

Given the important role proxy applications play in the co-
design process, it is critical to understand which salient perfor-
mance characteristics of a parent application are covered by a
proxy and how well. Unfortunately, the notion of “coverage”
is currently highly subjective, and the strategies such as linear
correlation and Principal Component Analysis (PCA) adopted
for such comparative analysis are ineffective. To the best of
our knowledge, this paper is the first to present a principled,
machine learning approach that methodically quantifies the
quality of a match.

We introduce novel machine learning techniques to iden-
tify important performance characteristics of applications and
quantify the coverage provided by a proxy application com-
pared to its parent. Our approach adopts ideas from sparse
learning theory to identify performance metrics that can de-
scribe the performance characteristics (e.g., efficiency loss) of
an application. Further, we define two new metrics – 1. a new
quality metric, Resource Significance Measure, to measure the
significance of hardware resources in predicting application
performance, computed by accumulating the beliefs from each
of the constituent metrics in the learned sparse model; and 2. a
Coverage metric to indicate the quality of a match between
the resource utilization behavior of a proxy and its parent
application. Note that instead of aggregating pairwise correla-
tions between the individual metrics, our approach constructs
subspace models for both proxy and parent using all metrics
corresponding to a hardware resource and estimates how well
the models agree. In addition to being robust, this provides
a principled way to compare multiple metrics simultaneously.
We implement these methodologies in VERITAS, a machine
learning framework for comparative performance analysis.

We focus on on-node performance behaviors of applications
to tackle the increasing node complexity on current and up-
coming systems. However, similar analysis could be applied to
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off-node communication or other performance characteristics.
We apply VERITAS to five different kernels implemented
in three proxy applications. These proxy applications are
developed to capture on-node performance characteristics of
two production codes in the area of nuclear reactor design –
OPENMC, a Monte Carlo particle transport simulation code
focused on neutron criticality calculations [6], and CMTNEK,
a spectral element code covering thermal hydraulics [7]. We
analyze these kernels on two different architectures – IBM
Blue Gene/Q (BG/Q) and Intel Xeon.

In summary, the main contributions of our work are:
• We define a novel high-level metric, “Resource Signifi-

cance Measure (RSM)” and present a machine learning
technique for computing RSM in order to identify which
high-level resource utilizations cause performance loss in
applications as we scale.

• We define a novel metric, “Coverage” and present a
machine learning technique for computing Coverage to
quantify how well performance behaviors match between
proxy and their parent applications.

• We implement a framework, VERITAS, that presents
RSM and Coverage in an easy to understand format,
and reports individual performance metrics that contribute
significantly to performance loss of applications.

The remainder of this paper is organized as follows. Sec-
tion II provides the background on machine learning tech-
niques applied in this paper. Section III explains the ma-
chine learning techniques we have developed for performance
coverage analysis. Section IV presents the implementation of
the validation approach in VERITAS. Section V explains the
experimental setup. Section VI presents validation results for
three applications on two different architectures. Section VII
reviews related work and Section VIII concludes the paper.

II. BACKGROUND

In this section, we briefly review the mathematical prelimi-
naries for the development of our coverage analysis approach.

A. Feature Selection using Sparse Coding

We pose the task of identifying metrics that predict the
performance attribute (e.g., runtime, parallel efficiency) of
applications as a feature selection problem. Due to the large
number of performance metrics that can be collected, the task
of identifying the salient ones that are actually relevant to the
performance of applications can be daunting. The feature se-
lection process filters the number of attributes that application
developers need to investigate in order to diagnose the cause of
performance loss. Though there is a broad spectrum of feature
selection techniques, sparse learning has recently emerged
as a powerful tool to obtain models with high degree of
interpretability from high-dimensional data [8]. At a high level,
sparse learning is a regression technique with sparsity im-
posed, which improves regularization and robustness to noisy
data. There is extensive literature on sparse machine learning,
with terms such as compressed sensing [9], Lasso regression
and convex optimization [10] associated with the field. Several

successful applications of sparse learning have been reported
in image/signal processing and data analysis [11].

B. Evidence Computation

Our analysis is based on understanding the impact of
different hardware counters on performance. The number of
counters in a typical system can be quite large, which makes
it challenging for the analyst to interpret the results from even
a sparse model. In order to alleviate these challenges, we
categorize these hardware counters into a small number of
high-level groups (details can be found in Section III) and
quantify the amount of information each group provides in
predicting the performance attribute. In particular, we utilize
a well-known statistical inferencing framework, Dempster-
Shafer theory (DST) [12], to estimate the degree of belief
for each hardware counter and then accumulate their beliefs
to obtain a measure of significance for each counter group.
Let Θ be the universal set of all hypotheses, i.e., the set of
all hardware counters in our case, and 2Θ be its power set. A
probability mass can be assigned to every hypothesis H ∈ 2Θ

such that,

µ(∅) = 0,
∑

H∈2Θ

µ(H) = 1 (1)

where ∅ denotes the empty set. This measure provides the
confidence that hypothesis H is true. Using DST, we can
compute the uncertainty of the hardware counters in predicting
a performance attribute using the belief function, bel(.), which
is the confidence on that hypothesis being supported by strong
evidence. The belief function is defined as

bel(H) =
∑
B⊆H

µ(B) (2)

We develop a new evidence measure by accumulating the
beliefs within a group, using Dempster combination rules.

C. Subspace Analysis

The problem of comparing the characteristics of two ap-
plications can be viewed as the comparison of the feature
spaces, i.e. counters corresponding to each resource group.
In statistical modeling, it is common to assume that data can
be effectively embedded in low-dimensional linear subspaces,
i.e. the underlying data distribution can be described using
fewer degrees of freedom. For example, PCA determines the
directions of maximal variance and projects the data onto that
subspace. The resulting subspaces often emphasize the salient
structure in data while rejecting noise and outlier data. Conse-
quently, instead of comparing the high-dimensional data, we
compare their corresponding low-dimensional representations
for robust analysis. A linear subspace can be conveniently
represented using its basis B ∈ RC×d, where C is the
dimensionality of the data, and d is the dimensionality of the
subspace. The collection of all d-dimensional linear subspaces
forms the Grassmannian G(d,C), a smooth Riemannian man-
ifold, which allows effective geometric and statistical analysis
of subspaces. Based on this idea, we introduce a novel and



computationally efficient similarity measure for comparing
two subspaces.

III. METHODOLOGY

In this section, we describe the proposed methodology for
comparing the performance characteristics of an application
and its proxy. More specifically, we view the problem of com-
parative analysis as measuring how closely the data subspaces
of two applications match.

A. Metrics and Resources

The first step is to select the metrics for our comparative
analysis. Since we focus on on-node performance, which is
typically constrained by hardware bottlenecks on the pro-
cessors or in the memory system, we rely on hardware
performance counters in this work. In order to identify salient
performance characteristics of applications at a granularity
that is intuitive, we first organize all input metrics into high-
level semantic groups using a suitable heuristic. In particular,
for this work we group the hardware counters based on
which hardware components (e.g., memory, L1, L2) they
monitor [13], [14]. This enables users to directly identify the
high-level hardware resources where scalability bottlenecks
could appear. In this paper, we refer to these high-level groups
as “resource groups” or simply “resources”.

Table I presents the names of the resource groups for the two
architectures we use in our evaluation. We categorize counters
into resource groups in two steps. First, we use a static metrics-
to-resource group mapping to categorize counters. The static
map file is useful when users want to assign counters to
resources based on their understanding of the hardware or
when counter names themselves do not offer clear information
about which resources they belong to. Second, we classify
the rest of the counters based on matching resource group
names as substrings of counter names. The substring matching
approach is based on the rationale that PAPI [15] annotates
hardware counter names with their associated resource group
names.

TABLE I: Resource groups on Blue Gene/Q and Xeon

Resource Group Blue Gene/Q Xeon

Instruction unit IU -
Floating point unit AXU FP
Execution unit XU -
Branch unit BR BR
Load/store unit LSU -
Prefetch events - PREFETCH
L1 prefetcher L1P -
L1 cache L1 L1
L2 cache L2 L2
Last level L3 cache - L3
Translation look aside buffer TLB TLB
Memory MEM MEM

The set of performance metrics corresponding to the appli-
cation and its proxy are denoted by the matrices Y ∈ RC×N

and Z ∈ RC×M respectively. Here, C indicates the set of per-
formance metrics considered for analysis, while the variables

N and M denote the total number of runs for the two appli-
cations using different configurations (e.g., by using different
numbers of threads and workloads). The performance-metric-
to-resource-mapping, specific to the system architecture, is
denoted by M ∈ RC×R where R is the total number of
resources.

B. Approach and Target Attribute

With the resources defined, our approach has two main
steps: (a) determining the significance of each resource in
predicting a target performance attribute of an application, and
(b) measuring the resource level compatibility between the
application and its proxy. While the former step enables the
designer to identify salient performance characteristics (e.g.
where bottlenecks appear) in the application, the latter step
reveals aspects in the proxy that are consistent with the target
application.

In this paper, we use parallel efficiency loss (Equation (3))
for on-node strong scaling as the target performance attribute.
The rationale for this choice is that efficiency loss directly
impacts the final time to solution, the metric users care
most about, yet allows for easy relative comparisons and
normalization across applications and systems. Efficiency loss
typically increases as an application uses more cores on a
multi-core machine, and since every performance metric has
a non-zero penalty, we want to identify those that follow the
same growth pattern as efficiency loss.

efficiency loss(p) = 1− T (1)

(T (p)× p)
(3)

where p = number of tasks (threads or processes) and T (p) =
execution time when using p tasks.

C. Computing Resource Significance

Finding important metrics that are predictive of a target
attribute is essentially a feature selection problem. Existing
work such as [16] applies regression models to different
feature subsets and adopts heuristic measures such as the R2

statistic to identify the minimal subset that leads to the best
prediction. However, this can be ineffective in the presence of
noise in the data, when the dataset is limited, or in cases of
model overfitting.

A natural approach to understanding the effect of a feature
(performance metric in our case) on a target attribute (i.e.,
efficiency loss) is to measure their correlation properties.
However, this approach has some fundamental shortcomings.
First, a strong correlation does not imply causation. Second,
this analysis is carried out with one predictor variable at
a time, and hence inferring a group of metrics that are
jointly correlated to the target attribute is not straightforward.
This issue can be alleviated to an extent by applying linear
transformations to the data using techniques such as Principal
Component Analysis (PCA) or Canonical Correlation Analysis
(CCA). However, these methods create new, complex features
by linearly combining the original features, and hence make
interpretation of the results difficult.



In contrast, we measure the significance of resources in pre-
dicting a target performance attribute (e.g., efficiency loss) by
building a linear predictive model based on the collected met-
rics. In particular, we adopt the idea of sparse representations
to identify performance metrics that can effectively describe
the scaling behavior of an application. Using the inferred
sparse model, we first derive per-metric beliefs in causing
the observed performance behavior, and then aggregate those
beliefs to estimate per-resource significance. The latter step
allows us to understand which hardware resources impact the
scalability of applications and which of these characteristics
are covered by a proxy or not.

Identifying Salient Performance Metrics: The underlying
assumption in sparse representations is that the data is drawn
from a union of low-dimensional subspaces, which need not be
completely disjoint or orthogonal. In other words, a complex
pattern can be effectively decomposed into a small set of
diverse, elementary patterns. Mathematically, this assumption
is expressed as follows: given a target (efficiency loss), t ∈
RN , where N is the number of runs, and a dictionary of
representative patterns, D ∈ RN×C , where C is the set of
performance metrics, the sparse representation, a ∈ RC×1 can
be obtained as

min
a
‖t−Da‖22 s.t. ‖a‖0 ≤ κ (4)

where ‖.‖0 denotes the `0 norm that counts the total number
of non-zero entries in a vector, ‖.‖2 is the `2 norm, and κ
is the desired sparsity. In our case, the dictionary D = YT

is the collection of metrics (C). This optimization problem
solves for the sparsest set of performance metrics that can
predict t. Exact determination of the sparsest representation
using Equation (4) is an NP-hard problem [17], and hence
it is common to adopt greedy pursuit techniques to solve
it [18]. Greedy procedures for computing sparse representa-
tions operate by choosing the dictionary element that is most
strongly correlated to the t, remove its contribution and iterate.
In effect, they make a sequence of locally optimal choices
in an effort to approximate the globally optimal solution. In
particular, we use the Orthogonal Matching Pursuit (OMP)
algorithm [19], which ensures that the residual vector com-
puted in each iteration is orthogonal to the dictionary elements
picked so far, and picks the smallest, diverse subset of metrics
to describe the performance loss.

Choosing Metrics with Similar Behavior: Because of the
sparsity constraint, expressed in Equation (4), two different
metrics that have similar patterns might not be picked together.
However, identifying related metrics, in particular if they
correspond to different hardware resources, is crucial to our
analysis. To overcome this challenge, we introduce a new
version of the OMP algorithm, referred to as the Ensemble
OMP, which creates a plurality of sparse representations
by randomizing the greedy selection procedure in each step
of OMP. More specifically, instead of choosing the most
correlated dictionary element in each step, we select τ most

correlated metrics and create a discrete distribution based on
their correlations, i.e., the higher the correlation, the higher
probability to be chosen in that step. We randomly pick a
metric using the discrete distribution, compute the residual,
and repeat this process until the desired sparsity κ is met or the
model achieves sufficient fidelity. We repeat this randomized
algorithm T times independently (set to 5, 000 in our experi-
ments), and similar to existing ensemble approaches [20], the
final representation is obtained by averaging the solutions in
the ensemble. The iterative algorithm can automatically stop
augmenting the model when the metrics cannot improve the
model fidelity any further or the desired κ is reached.

Resource Significance Measure: The final step in our algo-
rithm is to use the average representation from the ensemble
to estimate metric-wise belief, and subsequently evaluate the
significance of their corresponding hardware resource groups.
The belief for each of the metrics, if they have a non-
zero coefficient in the sparse representation, can be obtained
as the maximum likelihood estimate, where the likelihood
probability is inversely proportional to the reconstruction error.
These estimates can be propagated to their corresponding
resources by obtaining the compound evidence [12]. The steps
for computing Resource Significance Measure are listed in
Algorithm 1.

Algorithm 1 Compute the significance measure for a given
resource group r using the desired target attribute t.

1) Input: desired sparsity κ, ensemble size T and ensemble
parameter τ .

2) Initialize: i = 1.
3) Construct the dictionary matrix D = YT and normalize

the columns to unit `2 norm.
4) While i ≤ T :

a) Initialize Ω = ∅, r = t, Loop index l = 1.
b) While Stopping Criterion is not met:

i) Construct the discrete probability distribution
P using the τ largest elements in rTD.

ii) Randomly choose an index kl using P and
update the index set Ω← Ω ∪ kl.

iii) Compute the coefficient vector ai for the index
set Ω using least squares.

iv) Compute r← t−
∑|Ω|

j ai[kj ]dkj
.

v) l← l + 1.
c) i← i+ 1.

5) Using the ensemble representations {ai}Ti=1, compute
the average representation a = 1

T

∑
i ai.

6) Estimate the significance measure RSM r using Equa-
tion (7).

For a metric, indexed by j, which has a non-zero coefficient
value, i.e., aj 6= 0, its belief is inversely proportional to the
reconstruction error. In particular, we compute it as

αj = exp
(
−γ‖t− djaj‖22

)
(5)



Here, the parameter γ > 0 is the (inverse) width of the
Gaussian function. The larger the reconstruction error, the less
information the metric j provides about the target attribute and
hence its belief is lower. To pool the evidences of multiple
metrics within a hardware resource, we use a belief propaga-
tion strategy similar to the one by Hegarat-Mascle [21]. Given
two metrics i and j in a resource group r, we estimate the
accumulated evidence αi ⊕αj as

1− (1− η0.αi)× (1− η0.αj) (6)

where 0 < η0 ≤ 1 is the amount of belief we place on a
metric j when the reconstruction error is zero (set to 1 in our
experiments). Generalizing this, the significance for a resource
r of a workload w can be computed as

RSMw
r = 1−

∏
j∈Lr

(1− η0.αj) (7)

where Lr is the set of all metrics belonging to resource r
with non-zero coefficient values. In order to easily interpret the
relative significances of the different resources, we normalize
the RSM corresponding to all resources between 0 and 1. In
cases where we are interested in understanding the resource
significance in describing performance characteristics of dif-
ferent workloads, we evaluate

RSM r =
1

W

W∑
w=1

RSMw
r (8)

Here, W denotes the total number of workloads considered,
and RSMw

r corresponds to the resource significance for the
resource r and workload w.

D. Comparing Application and Proxy

In this section, we describe our approach for resource-wise
comparative analysis between the parent and its proxy by
measuring the compatibility between the two feature spaces
defined by the set of performance metrics (C). More specif-
ically, we build low-dimensional PCA subspaces for the two
feature spaces, and construct the geodesic curve between them
using it to estimate the dissimilarity (Figure 1). Note that,
for a given resource group, the lower the resource subspace
dissimilarity measure (RSDM ), the higher is the compatibility
between the two applications.

Subspace Construction: We begin by creating d-dimensional
PCA subspaces BPA and BPR for the parent and proxy
applications respectively. In order to estimate the dimension
d of the PCA subspaces, we combine the two datasets and
compute the joint PCA basis, BPA+PR. Intuitively, if the two
applications are similar, then all three subspaces should not be
too far away from each other on the Grassmannian. Formally,
we measure

D(d) = 0.5[sinαd + sinβd] (9)

where αd and βd denote the dth principal angle between the
subspace pairs BPA and BPA+PR, and BPR and BPA+PR

respectively. When D(d) is small, it implies that the two

Fig. 1: Illustration of the geodesic flow between the applica-
tion and proxy subspaces, on the Grassmannian, for a given
resource. We use tools from Grassmann analysis to measure
the compatibility between the two applications.

subspaces are well-aligned. At its maximal value of 1, the two
subspaces will be completely orthogonal, thereby indicating
that the two applications are completely unrelated. Optimally,
the dimensionality d should be high enough, while ensuring
that the directions are not completely orthogonal. To identify
the optimal d, we use a greedy strategy,

d∗ = min{d|D(d) ≥ δ} (10)

In our implementation, we fixed δ = 0.4, since in all data
collected in our experiments, this led to an estimated d∗ that
captured more than 90% of the energy in both the individual
feature spaces.

Algorithm 2 Compute the resource subspace dissimilarity
measure for a given resource group r.

1) Compute the PCA subspaces for the parent data Y, the
proxy data Z and for the combined dataset [YT ,ZT ]T .

2) Estimate the optimal subspace dimension d∗ using Equa-
tion (10) and retain only the top d∗ components of the
PCA subspaces BPA and BPR.

3) Project data onto the corresponding PCA subspaces.
4) For each dimension i ≤ d∗: Fit two 1D Gaussians
Ai and Pi to the ith dimension of the parent and
proxy subspaces, and compute the symmetricized KL-
divergence between them as

λi = KL(Ai||Pi) +KL(Pi||Ai)

where

KL(Ai||Pi) =
∑
j

Ai(j) log
Ai(j)

Pi(j)

5) Compute the dissimilarity measure by averaging λi
over all d∗ dimensions, weighted by the corresponding
principal angles:

RSDM r =
1

d∗

∑
i

θiλi

Measuring Dissimilarity: We consider two applications to be
compatible with respect to a given resource group when (a)



the two subspaces are geometrically well-aligned, and (b) the
data in the projected subspaces are similarly distributed. The
steps involved in this algorithm are listed in Algorithm 2. Note
that, the diagonal elements of the matrix Σ from the SVD of
BT

PABPR = UΣVT correspond to cosθi, where θi are the
principal angles between BPA and BPR. They measure the
amount of overlap between the two subspaces. Similar to the
previous case, we normalize the RSDM measure between 0
and 1. Finally, in cases where there are multiple workloads,
the dissimilarity measure is obtained as the average of the
individual workloads. For easy interpretation of the results,
we define the Coverage measure for each resource r as

Coverager = 1− RSDM r,∀r. (11)

IV. THE VERITAS FRAMEWORK

In this paper, we focus on on-node scalability of applica-
tions. Hence, we collect, analyze, and present metrics that
are relevant to multi-core resources via hardware performance
counters. Since our analysis methodology depends on the
concept of explaining a target variable based on a dictionary of
features, it does not depend on the types of metrics collected.
We use an open-source per-thread hardware performance
counter collection tool called perf-dump [22]. Perf-dump is
based on PAPI [15], a library that provides a portable interface
to access hardware performance counters. We collect both
preset counters that are general across architectures and native
counters that are hardware-specific. We categorize them into
several high-level hardware resource groups (Table I) for two
different architectures, Xeon and BG/Q based on the manu-
facturer’s stated semantics. Although resource categorization is
architecture-specific, we assert that this is a one-time operation
and hence practical.

We implement the coverage analysis methodology presented
in the previous section in a framework called VERITAS.
Figure 2 shows its overall workflow. In order to compare
the performance behaviors of a proxy with its parent, we
annotate corresponding code regions using perf-dump instead
of the entire application. Once corresponding code regions
are annotated and applications are compiled, we collect all
hardware performance counters by executing them on the same
machine. The framework implements three modules to process
input, analyze data, and visualize the output of the analysis.

The preprocessor module in VERITAS, written in
Python, reads performance data collected by perf-dump, com-
putes averages of the performance metrics, and generates a
metrics-to-resource-map using the technique described at the
end of this section. This map is later used by the analysis
module for computing resource-level significance.

The analysis module of VERITAS, implemented in Mat-
lab, takes the event-to-resource-map along with the perfor-
mance data collected for both applications and applies the
methodology described in Section III for computing resource
significance (RSM) and coverage for each resource group.

The visualization module generates three different
pieces of information: (1) an overall coverage analysis output

Preprocessor
Module

Analysis
Module

Visualization
Module

perf-dump

Code Region in 
Parent App

Code Region in 
Proxy App

1

3

4

1

Execute

Execute

2

Static
Event Map

Resource
Groups

Fig. 2: Workflow showing the coverage analysis methodology
as implemented in VERITAS.

for each resource (e.g., Figure 6), (2) per-workload breakdown
of coverage output (omitted due to space constraints), and
(3) for each resource, hardware counters that have non-zero
beliefs (α). As an example, Figure 6 presents the importance
of resource groups for a parent-proxy pair along the X axis
(between 0 and 1, where 0 means the lowest and 1 means the
highest importance), and coverage along the Y axis (between
0 and 1, where 0 means “does not cover” and 1 means “covers
exactly”). Coverage greater than 0.8 means that on average the
proxy covers more than 80% of the utilization behavior of the
parent for a certain resource.

RSM is a non-linear quantity, i.e., the summation of RSM
scores across resources does not equal to 1. RSM computed by
VERITAS provides a relative ranking of resource importance
in the order of their prediction power. A resource with RSM
of 0.8 means that information about that resource alone can
be used to predict the efficiency loss with 80% probability.
A resource with RSM of 0.5 on the other hand indicates a
50% chance and cannot be used with confidence to predict the
efficiency loss of an application. In our experience, coverage
≥ 0.8 and RSM ≥ 0.8 are sufficient to provide a realistic
picture. However, others can adjust this user-defined threshold.

Static Event Map: We use the following rules to generate
the static event map for the experiments presented in this
paper: (1) events measuring any resource access or hit belong
to the resource their names reflect (e.g., PAPI L1 DCA or
L1 data cache access is categorized in L1 cache); (2) events
measuring cache misses are associated with the next level
of cache since their latency is bound at least by the access
cost of the next level cache (e.g., PAPI L1 DCM or L1
data cache miss is categorized in L2); (3) TLB misses are
categorized in TLB since different architectures resolve TLB
misses differently depending on the memory needs of the
application [23] (e.g., a TLB miss on BG/Q may or may not
result in an L2 request, whereas on Xeon may result in a page
walk that could hit any level of cache); (4) Stalls are attributed
to the next level of hardware resource since their latency is
bound by the latency of the resource they are waiting upon
(e.g., events named PEVT L1P BAS * STALL * indicate
the L1 prefetcher is stalled for data to arrive at the L2



cache on BG/Q and hence are categorized in L2). Stall events
such as RESOURCE STALLS2:ALL FL EMPTY and PAR-
TIAL RAT STALLS:FLAGS MERGE UOP represent con-
tention during out-of-order execution on Xeon and could have
resulted due to contention at either the core or the memory
system. Since, the reason for these stall events could be more
than one, we omit these two stalls from our analysis.

V. EXPERIMENTAL SETUP

In this section, we describe the target platforms and appli-
cations used to analyze performance coverage.

A. Target Systems

We used VERITAS to analyze the coverage of five dif-
ferent kernels of three proxy applications on two different
architectures: IBM Blue Gene/Q and Intel Xeon. We ran our
experiments on Vulcan [24], a 24-rack, 5 Petaflop/s BG/Q
system with 24, 576 nodes. Each compute node contains 16
GB of main memory and hosts a 64-bit PowerPC A2 with 16
cores at 1.6 GHz, each running up to 4 hardware threads. Each
core has an L1 instruction and data cache of size 16 KB each,
and an L1 prefetcher cache with 32×128 bytes. The L2 cache
of 32 MB is shared among all cores and split into sixteen 2
MB slices. We ran the rest of the experiments on Cab [25], a
431 Tflop/s Intel Xeon cluster with 1, 296 nodes. Each node
on Cab is a dual-socket Sandy Bridge processor with 32 GB
of memory, 20 MB shared L3 cache across all eight cores on
each socket. Each core has a private 256 KB L2 cache and 32
KB L1 data and instruction caches.

B. Parent and Proxy Applications

OPENMC is a Monte Carlo (MC) particle transport simula-
tion code focused on neutron criticality calculations [6] for
computer-based simulations of nuclear reactors. The applica-
tion is written in FORTRAN with parallelism supported by a
hybrid OpenMP/MPI model and is available online at [26].
It computes the path of a neutron as it travels through a
nuclear reactor. MC methods are popular since they require
few assumptions, resulting in highly accurate results given
adequate statistical convergence.

XSBENCH [27] is a proxy for OPENMC that models the most
computationally intensive part of a typical MC reactor core
transport algorithm, the calculation of macroscopic neutron
cross-sections, which accounts for around 85% of the total
runtime of OPENMC [28]. XSBench retains the essential
performance-related computational conditions and tasks of
fully featured reactor core MC neutron transport codes, yet
at a small fraction of the programming complexity of the
full application. The application is written in C, with multi-
core parallelism support provided by OpenMP and is available
online at [3].

RSBENCH is a proxy application similar in purpose to
XSBENCH, but models an alternative method for calculating
neutron cross-sections – the multipole method. This algorithm

presented by Tramm et al. [29] compresses data into an ab-
stract mathematical format. The basic idea of this method is to
reduce the memory footprint of cross-section data and improve
data locality at the cost of an increase in the number of
computations required to reconstruct it. Since data movement
is more expensive than computation, this method may pro-
vide significant performance improvements compared to the
classical approach implemented in OPENMC and XSBENCH.

CMTNEK solves compressible Navier-Stokes equations for
multiphase flows and is implemented in FORTRAN. The ob-
jective of this application is to perform high-fidelity, predictive
simulations of particle laden explosively dispersed turbulent
flows under conditions of extreme pressure and temperature.
It builds on the highly scalable Nek5000, a Gordon Bell
prize-winning, spectral element, computational fluid dynamics
code developed at Argonne National Laboratory for simulating
unsteady incompressible fluid flow with thermal and passive
scalar transport [7].

CMTBONE [4] encapsulates the key data structures and
computation operations of CMTNEK. CMTBONE is still under
development and will eventually allow a variety of architecture
evaluations and scalability studies. Additionally, the particle
simulation capabilities present in CMTBONE will allow for
the study and modeling of a variety of dynamic load balancing
algorithms. The developers of CMTBONE are interested in
monitoring and comparing three specific regions in the code.
These are as follows:
point_compute_kernel: This is where the primitive
variables are computed.
compute_kernel: This is where fluxes and spatial partial
derivatives of the fluxes are computed. This is the key com-
putation step in CMTNEK.
comm_kernel: Contrary to the name, this module currently
only implements computation steps necessary for calculating
face fluxes.

VI. RESULTS

First, we present an empirical validation of the generated
models using the STREAM [30] and DGEMM [31] bench-
marks. Both STREAM and DGEMM were compiled using
Intel compiler version 13.1.163. Following this, we present
the coverage of five different kernels of three different proxy
applications.

A. Model Validation

STREAM: The four computation kernels in the memory
benchmark STREAM are described in Table II. We compiled
the application with the flag “-nolib-inline” in order to ensure
that the compiler did not replace the COPY kernel with the
optimized “memcp” function. We ran the benchmark on Xeon
with array size set to 50M elements, and ran each experiment
100 times. We collected all hardware performance counters
on Xeon for each of these kernels and Figure 3 shows that
VERITAS identifies memory subsystem (specifically, L3 for
ADD and TRIAD, and memory for COPY and SCALE) to be the



TABLE II: Basic operations in the STREAM benchmark. The
variables a, b, and c are vectors of floating-point numbers.
The variable s is a scalar floating-point value.

Name Code

ADD a[i] = b[i]+c[i];
SCALE a[i] = s*b[i];
COPY a[i] = b[i];
TRIAD a[i] = b[i]+s*c[i];
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Fig. 3: Model validation by analyzing the resource utilization
behaviors of different STREAM kernels.

resources that impact the on-node scalability of these kernels.
VERITAS reports that the individual metrics that constitute
traffic to the memory are data cache, prefetch, load, and
store misses to the last-level cache. Since total memory used
was 1GB, which is greater than the size of the last-level
cache, these misses generated traffic between the last-level
cache and the node memory. The observations made based on
our resource significance measure and the individual counters
reported by VERITAS conform to the well known findings that
the performance of STREAM kernels with scale are memory
bandwidth bound.

Discussion: Although, the COPY kernel has no floating-
point operations in the computation loop, the PAPI counter
PAPI FP OPS on Sandy Bridge has over-counted the number
of operations and instead of 0 has reported a very small, albeit
non-zero number. This is why the model computes a non-
zero resource importance for the FP resource. However, our
model is robust against this: it shows very small RSM for the
core-private resources. Since a value such as 0.13 indicates
that a particular resource cannot be used with confidence in
predicting the efficiency loss of an application, the ultimate
result that L3 and memory (RSM > 80%) are the most
important resources for STREAM kernels still holds.

We also compared pairs of STREAM kernels with similar
code paths, i.e., ADD (proxy) to cover TRIAD (parent), and
COPY (proxy) to cover SCALE (parent) for 50M elements.
Figure 4 shows that the resource utilization behaviors of
ADD and COPY are similar to that of TRIAD and SCALE
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Fig. 4: Comparison of resource utilization behaviors of
STREAM kernels. In this figure, we compare ADD (proxy)
to cover TRIAD (parent), and COPY (proxy) to cover SCALE
(parent).
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Fig. 5: Model validation with DGEMM.

respectively for all of the important resources.

DGEMM: In this experiment, we use a compute-bound bench-
mark, DGEMM, to validate our model. We collect the per-
formance metrics for the parallel matrix-matrix multiplication
kernel in DGEMM. To operate DGEMM in compute-bound
mode, we use the compilation flag “-DUSE MKL”, and collect
the performance metrics of the master thread alone since the
benchmark calls the optimized DGEMM kernel provided by
Intel compiler 13.1.163. We use N = 4096 (memory used
384MB), which on average leads to 262 Gflop/s or 78% of
the peak for the 16 thread case. Even though the memory
requirement for this benchmark is larger than the cache sizes,
the optimized DGEMM routine uses cache blocking to avoid
stressing the TLB and the memory subsystem. We run one
thread per core on an Intel Xeon machine, and scale DGEMM
from 1 to 16 threads. Figure 5 shows that the efficiency
loss of DGEMM with scale is due to the utilization of the
computational units, since the RSM for the memory subsystem
is low. This is expected from a compute-bound kernel, and
the output from the model correctly reflects that. Figure 5
also shows that for FP, RSM is below the threshold of 80%,
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Fig. 6: Coverage analysis versus resource importance of XSBENCH against OPENMC on two different architectures.

since DGEMM shows good strong scaling and consequently
the number of floating point operations decreases rather than
being a bottleneck. Details provided by VERITAS show that as
DGEMM scales, the contention for the branch prediction unit
contributes strongly to the little remaining efficiency loss of
DGEMM. This is likely caused by increasingly smaller tiles
as we strong scale.

We also validated our model for computing “Coverage” (de-
scribed in Section III-D) by computing compatibility between
the same application with itself. The resulting Coverage was
found to be 1, that is an application completely covers itself
(figure not included in this paper).

B. XSBench

The objective of this experiment is to identify which re-
sources on two different architectures cause efficiency loss
when OPENMC scales for different workloads, and how well
XSBENCH covers them. We ran XSBENCH and OPENMC on
Xeon and BG/Q using six different workloads. These work-
loads essentially vary the size of a lookup table that is accessed
randomly in both of these applications. Table III shows the
workload sizes and the amount of memory consumed by
each workload. Workload 1 is the smallest (445MB), and
workload 5 is the largest (5710MB). These input workloads
are publicly available in the OPENMC git repository. Each
workload specifies the number of isotopes of a fuel material
in a nuclear reactor. For a similar workload, XSBENCH takes
the number of isotopes of the fuel material as input.

TABLE III: Workloads for OPENMC and XSBENCH.

Workload ID Number of isotopes Memory consumed (MB)

1 55 447
2 192 1721
3 242 2692
4 292 3877
5 341 5248
6 356 5700

From Figure 6 (left) we can observe that on Xeon the
memory behavior of OPENMC impacts scalability across all
workloads and XSBENCH captures 80% of that behavior

(Coverage > 0.8). The beliefs of performance counters
reported by VERITAS further reveals that prefetch, load, and
store misses to the main memory, that is shared across cores
on the same socket, are mainly responsible for efficiency loss
on Xeon. The large contribution of node prefetch miss can
be explained by the fact that random access through memory
makes prefetch ineffective. Further investigation reveals that
the large number of load and store misses to the on-node
memory is generated because contiguous numbered cores
physically reside on different sockets. Since we bound threads
contiguously (thread 1 on core 1, thread 2 on core 2 and so on),
more data lines allocated on different sockets were accessed
by threads as these applications scaled.

From Figure 6 (right) we can observe that on BG/Q, the
L2 utilization behavior of OPENMC causes efficiency loss.
The performance counters reported by VERITAS reveals that
the execution units stalled for data to be available on the L2
cache. This observation conforms to the general understanding
of the fact that the on-node scalability of OPENMC is latency
bound. XSBENCH covers 90% of the L2 utilization behavior
on BG/Q.

C. RSBench

RSBENCH implements an alternative method to computing
cross-section lookup. This algorithm reduces the memory
consumption from 5.6 GB to 41 MB, and instead of using
a lookup table, uses a large number of computation cycles to
recompute data needed.

We can observe from Figure 7 (left) that RSBENCH exhibits
different resource utilization characteristics than OPENMC on
Xeon. The memory utilization behavior of OPENMC can be
used almost exclusively to predict efficiency loss with scale,
however RSBENCH only captures approximately 75% of that
behavior. Since RSBENCH implements a more computation-
ally expensive multipole method that reduces data movement
to memory, its memory utilization behavior does not impact
its scalability as much.

Figure 7 (right) shows that on BG/Q, surprisingly for strong
thread-scaling experiments, the resource utilization behaviors
of RSBENCH are similar to that of OPENMC even though
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Fig. 7: Coverage analysis versus resource importance of RSBENCH against OPENMC on two different architectures.

these two applications implement two different algorithms.
Details provided by VERITAS indicate that the major reason
for efficiency loss of both OpenMC and RSBench on BG/Q
was because the core was waiting for the shared L1 prefetcher
to read data from L2 (PEVT L1P BAS LU STALL * coun-
ters). This indicates that both of these algorithms, although
implemented differently, are latency bound.

D. CMTBONE

In this section, we separately present the performance
coverage behaviors of the three CMTBONE kernels described
earlier. We varied the polynomial order and the number of
elements parameters in CMTNEK and CMTBONE. We did
strong scaling of both CMTNEK and CMTBONE from 1
through 16 processes on one Xeon node. We varied the
workload by changing Nx to 5, 7, 9, 11, 13, 151 and the num-
ber of elements to 512 and 1000. Altogether, there were
12 different workloads. Below, we present results on Xeon
to demonstrate how VERITAS can be used to analyze the
performance coverage of CMTNEK.

point_compute_kernel: This kernel computes primitive
variables that are necessary for evaluating surface and volume
integrals for CMTNEK and CMTBONE. Primitive variable
computation is essentially a number of vector-vector multipli-
cations. Figure 8 shows that on Xeon, the corresponding kernel
in CMTBONE covers 100% of all but one of the resource
utilization behaviors. The individual counters reported by
VERITAS reveals that the only floating point performance
counter that causes non-zero contribution to the efficiency
loss in CMTBONE is the number of floating point opera-
tions that retire without generating an interrupt (measured
by “FP COMP OPS EXE:X87”), while the performance of
CMTNEK does not depend on any of the floating point
operations. This is not a significant difference and hence can
be considered a perfect coverage.

compute_kernel: This kernel is the key module in CMT-
NEK that essentially performs matrix-matrix multiplications

1Odd Nx ensures even polynomial order and integral whole numbers for
the number of points for overintegration.
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Fig. 8: The point_compute_kernel of CMTBONE cov-
ers the resource utilization of that for CMTNEK.

for computing fluxes and spatial partial derivatives of fluxes.
Figure 9 shows that the compute_kernel of CMTBONE
captures more than 80% of the memory utilization behavior
of CMTNEK. Additionally, the proxy application covers the
rest of the resource utilization behaviors almost exactly. This
figure also shows that the major cause of efficiency loss with
scale in the compute_kernel for both applications is the
memory utilization behavior. Further investigation reveals that
the gradient and the volume integral computations in this
module perform a number of matrix-matrix multiplications
where matrices are accessed in column major order. This
results in a large number of L3 store misses that generates
a large number of node memory store operations.

comm_kernel: In this kernel both CMTNEK and CMT-
BONE implement steps necessary to compute face fluxes.
Figure 10 shows that even though memory utilization
is the most important behavior that impacts scalability
(Resource Importance ≥ 0.9), the comm_kernel in CMT-
BONE does not capture that characteristics (Coverage < 0.5).
Further investigation reveals that the face flux computation
function in CMTNEK implements a number of memory copy
operations from a 3D matrix to an array that the corresponding
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Fig. 9: The compute_kernel of CMTBONE covers the
resource utilization of that for CMTNEK.
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Fig. 10: The comm_kernel of CMTBONE does not cover
the memory utilization behavior of CMTNEK.

kernel in CMTBONE does not implement. Since memory copy
is expensive, it affects the scalability of the comm_kernel
in CMTNEK, but is not covered similarly by that in CMT-
BONE. The significant impact of these missing operations was
not expected by the application developers. This discrepancy
already led to new developments for CMTBONE in order to
improve the match.

VII. RELATED WORK

Tramm et al. [27], [29] analyze XSBENCH and RSBENCH
using a correlation-based approach to understand how well
XSBENCH and RSBENCH cover the resource utilization be-
haviors of OPENMC. However, since correlation does not
mean causation, performance counters strongly correlated with
runtime do not necessarily contribute to the performance loss.
Also, none of these techniques can address the fact that a
number of these performance counters can be inter-correlated
in nature with the performance attribute. In contrast, our
methodology identifies groups of performance metrics that
cause the performance loss in applications as we scale.

Supervised learning techniques have been used in the lit-
erature successfully for selecting features that can effectively
predict runtimes of applications. Jain et al. [32] and Bhatele

et al. [16] respectively apply regression models to predict the
runtime of applications based on network congestion metrics
and use rank-wise correlation and R2 measures to evaluate
the quality of prediction. In addition, Bhatele et al. perform
an extensive search on all possible subsets of performance
metrics to select features that result in the best prediction
performance. Since the number of hardware counters can be
large (on the order of hundreds), such an exhaustive feature
selection process is not ideal. In contrast, VERITAS extends an
unsupervised learning technique by building linear regression
models with inherent feature selection. Commonly referred to
as sparse coding or Lasso regression, this approach encodes
the target feature (to be predicted) using a sparse set of
input features. The requirement for sparsity both regularizes
the regression problem to avoid overfitting, and makes the
inference robust to noise/outlying data.

Principal Component Analysis (PCA) and clustering-based
analysis approaches have been used for analyzing massive
number of performance counters to understand program be-
havior. Phansalkar et al. [33] apply these techniques to the
SPEC CPU2006 benchmark suite to study whether applica-
tions included are well balanced or not. Ahn et al. [34] apply
these techniques to understand performance bottlenecks of
applications. While PCA is an important tool for reducing
the number of features to investigate, it combines multiple
features into groups that cannot be used to tie efficiency loss
back to individual resources that are culprits. In the context of
performance coverage analysis, identifying individual metrics
is the key to answering which resource utilizations are covered.

Yoo et al. [35] provide a decision tree based methodology
for associating performance metrics to program execution
behavior and apply it to micro-kernels with single bottleneck
each. While this idea is useful for identifying performance
bottlenecks for individual applications, the decision tree based
technique cannot be applied to study which performance
behaviors of two applications match.

VIII. CONCLUSION

Proxy applications are designed to cover a subset of perfor-
mance characteristics of larger production applications. This
paper presents a methodology that identifies which perfor-
mance characteristics of an application lead to efficiency loss
during on-node scaling; which of these are covered by a proxy,
and how well. In this paper, we present two novel quality met-
rics along with machine learning techniques to compute them:
Resource Significance Measure and Coverage. We implement
our methodology in a framework called VERITAS and apply
it to analyze five different kernels. Our framework reports
both overall resource-level significance and the individual
performance metrics that contribute to efficiency loss. These
results can be used by application developers to analyze which
resource bottlenecks are covered by a proxy with high confi-
dence, and which important performance characteristics of the
parent applications are not. This shows whether the existing
proxies are sufficient or whether new, additional proxies need
to be developed in order to complete the intended coverage.
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